IBM System/360 Basic Operating System
System Control (16K Tape)
Program Logic Manual

Program Number 360M-CL-405

This manual was prepared by Programming Systems to
provide detailed information on the internal logic
of the IBM System/360 16K Tape System Control
Programs. It is intended for technical personnel
who are responsible for diagnosing the system
operation and/or adapting the programming system
to special usage.

RESTRICTED DISTRIBUTION -- SEE ABSTRACT

7Z224-5022-0

Program Logic

PREFACE

The prerequisites for a thorough
understanding of this publication are a
basic knowledge of both System/360
programming concepts and Basic Operating
System 16K Tape Control -Programs. The
publications providing this information
are:

IBM System/360 Principles of Operation,
Form A22-6821;

IBM System/360 Basic Operating System:
System Control and System Service
Programs (16K Tape), Form C24-3431;

IBM System/360 Basic Operating System:

Detailed flowcharts with accompanying
narratives and a cross-reference label
list provide a quick guide to the
program listing.

2. Summaries of program flow, I/0 flow,
storage allocation, and constant areas
provide a basic understanding of the
program logic.

This publication describes the program
logic at three levels:
System level. A brief description of the

Supervisor and Input/Output Macros (16K
Tape), Form C24-3432;
IBM System/ 360 Basic Operating System:

programs in the system and how they
relate to one another.
Program level. A general description of

System Generation_and Malntenance (16K
Tape), Form C24-5015.

Closely related publications are:

IBM System/360 Basic Operating System:
Assenbler Language Specifications (16K
Disk/Tape), Form C24-3414;

IBM System/360 Basic Operating System:
Data Management Concepts (16K Tape),
Form C24-3430.

This publication is designed to help the
reader in two ways:

the flow of each program describing the
routines within the program and
information common to these routines.
Routine level. A detailed description of
the flow of each routine with reference
to a detailed flowchart of the routine.

Information common to all programs in
the system is found in the discussion of
the Supervisor, and a detailed layout of
system residence is found in the
introduction to the Librarian.

Copies of this and other IBM publications can be obtained through IBM

Branch Offices.
publication for readers' comments.
comments may be directed to:

IBM Programming Publications, Endicott, New York 13760.

(:) International Business Machines, 1966.

A form has been provided at the back of this
If the form has been detached,

S

IBM SYSTEM/360 BOS, SYSTEM CONTROL
(16K TAPE). v« o« o o o o o o o o =
System Residence. . . .
System Core Allocation.
System I/0.

. o
* o
.
¢ 0 0
e s o
. o 00

CONTROL PROGRAMS. + v o o« o o « o o
SUPERVISOR « v o o o o o o o o o« o o «

Supervisor Constant Areas. « « « « «
CHANQ - Channel Queue Table
PUBTAB - Physical Onit Block Table.
JIBTAB - Job Information Block

Table. . . « « .« .
TEBTAB - Tape Error Block Table . o
LUBTAB - Logical Unit Block Table .

Supervisor Nucleus e o e
Channel Scheduler - Chart AA. .
Actual I/0 - Chart AB . . .
I/0 Interrupt - Chart AC. o
Unit Check - Chart AD . . -
Supervisor Call Interrupt Char

BA-BF. . . . e o . . e
Fetch Subroutlne - chart BG o
External Interrupt - Chart BH o o =
Program Check Interrupt - Chart BH.
Tape Error Recovery - Charts CA-CD.

ts

Physical 1I0CS Error Transient Routines
Message Writer - Charts CE-CG . . .
Device Error Recovery - Charts

CH’ CK - - . - . . - . - L - . ° - -

Supervisor Transient Routines. . .
Checkpoint ($$BCHKPT) Chart DA.
Cancel ($3BCNCL) Chart DB . . .
Dump ($$BDUMP) Charts DC and DD
End of Volume ($$BEOVRT) Chart D
Illegal SVC Message ($$BILSVC)

Chart DE ¢ « ¢ o ¢ ¢ o o o o o o =
Job Control Open For Tape

($5BICOPT) Chart DF. . . . -
Message Input ($$BMSGIN) Chart DG o
Program Check (4$$BPCHK) Chart DH. .
Program Dump ($$BPDUMP) Charts DC

and DB « . & « o o
Restart ($$BRSTRT) Chart DJ e o o =

s s o
.

Macro Routines « . . « ¢ o« o ¢ o « « &
System Generation Macros.

Supervisor Communication Macros. . . .

JOB CONTROL - - L3 - - - . ° - - L] ° .
Job Control - Program Flow. . . .
Job Control - I/0 Flow. . . .
Job control - Storage Allocatlon.

Job Control ROutines . « o « « & o « «

e o 0 0 0 " s o e

e & o 0 0

O \O WO\

30
31
31
32
32

33
33
33
33

34
34

34
34

36

CONTENTS

Job Control Initialization
(JOBCTL) Chart EA . .

Job Control Input (STMTIN) Chart EB
ACTION - Chart EC
ASSGN - Charts ED, EE, EF
CANCEL - Chart EG
CLOSE - Chart EG.
CMNTPR - Chart EB
DATE - Chart EG .
DVCDN - Chart EH.
DVCUP - Chart EH.
ENTRY - Chart EC.
EOJRTN - Chart EJ
EXEC - Chart EK .
IGNORE - Chart EJ
INCLUD - Chart EC
JOB - Chart EL. .
LISTIO - Chart EM
LOG - Chart EN. .
MTC - Chart EN. .
NMTLB - Chart EN.
NOLOG - Chart EN.
OPTION - Chart EP
PAUSE - Chart EQ.

o s 8 o o 0

o B 8 6 0 8 0 b 4 6 b s s b b 4 v

S 0 0 0 0 0 0 & 3 b 0 0 4 4 0 0 2 0 0
o 0 0 0 0 0 8 0 0 6 6 4 5 4 0 4 0 0 e

o 6 0 0 0 6 0 0 s 0 e

PHASE - Chart EC.
RESET - Chart EQ.
RSTRT - Chart EQ.

SET - Chart ER. .
TPLAB - Chart ES.
UPSI - Chart ER .
VOL - Chart ES. .
Job Control Fetch (FETCHR) Chart E
Job Control Subroutines - Charts
FA.FG. e ® ®© © o ®© ® ®© ® ®© e o°o e e
Job Control Error Routines.

o 6 6 0 0 0o 9 2 9 0 & b ¥ 6 » 6 s 6 6 0 0 0o b6 0

e o o o *
e ¢ o o 0

e 0 o o o
O & 0 o o 0 4 4 s O 6 5 0 6 2 K 6 0 0 6 2 2 0 o 0

e 6 3 0 & 6 0 & 4 0 0 0 0 B 8 s & s 6 6 s % s 8 s

@ 0 0 0 & & o 0 % o 5 4 8 6 4 ¢ 6 0

.
-
)
°
-
-
-
-
-
-
-
e
-
-
.
-
-
-
-
.
-
-
°
°
°
-
°
-
K

INITIAL PROGRAM IOAD « <« ¢ o o « o o o

$SASIPL1 (Bootstrap). . . .
$SASIPL2 (Load) Charts GA and GB. .
4$IPLRT2 - Chart GC. . . - e .

Read Subroutine (READRT) Chart GD .
Scan Subroutine (OPRTN) Chart GE. .
Add Statement Subroutine (ADDRTN)
Chart GF « « « « « o o o
Delete Statement subroutine
(DELRTN) Chart GG. « « « « .
Set Statement Subroutine (SETRTN)
Chart GH « « . o o
Subroutines for $$A$IPL2 and
SIPLRTZC L] * . - - - - - - - - L] Ll
Subroutines for $IPLRT2 . « . . « .
Error Halts for $IPLRT2 . o . « « .

SERVICE PROGRAMS:. <« o « ¢ = o o o o =

LINKAGE EDITOR e o o

Language Translator Hodules o o o o

Linkage Editor Program Flow (Figure
41). ¢« o o . & e v o o o o o o o

Linkage Editor Core Allocation
(Figure 42). . . .

Linkage Editor I/O Flow (Flgure u3)

CONTENTS

@ 0 6 & 6 0 0 8 6 S 0 0 0 6 6 0 4 6 6 6 6 b 6 0 0 0 6 0 0 b

3

Pass 1-Coreload 1. . . « ¢ « « . .
I/0 Initialization (INTFIL) Chart
JA « e
Storage Inltlallzatlon (INTCRL)
Chart JB . . . - . -
Get Card Processor (GETCD) Chart JC
FETCH Subroutines (CTLFCH or
TNTFCH) Chart JD . . . ¢ « .
Input Subroutine (GETRCD) Chart JE.
Get Record Subroutine (CHKRTN)
Chart JF e o o
Identify Control Card (CTLRTN)
Chart JH . ¢ o ¢ o o o o o o « o &
Position To Operand Subroutine
(POSRTN) Chart JJ. . . « . =« o o
Include Card Processor (INCRTN)

Chart JK e o o
Action Card Processor (ACTRTN)
Chart JN o o

I/0 Subroutine (IORTN) Chart JR .

Pass 1-Coreload 2.
ESD Processor (ESDRTN) Chart KA .
TXT Processor {(TXTRTN) Chart KJ . .
RLD Processor (RLDRTN) Chart KK . .
END Card Processor (ENDRTN) Chart

KM ¢ ¢ o o o o o o o s = o o o o »
REP Processor (REPRTN) Chart KN . .

Pass 1-Coreload 3. +« 2« o o o« o o o « =
Phase Processor (PHSPRO/PHSFIN)

Chart LC &« o o o o o o s s o « = «

Entry Processor (ENTRTN) Chart LH .

Pass 2 « . o+ . . « o o .
Linkage Edltor (SLNKEDTF) Charts MA
tO MGe @ ¢ 4 4 o o o o o o o = o

Pass 3-Coreload 1. . . -
Initialization (INITIAL) Chart NA -
Compute Buffer Size (COMPUTE) Chart

NB - - - » - . - L
Read RLD Tape (RLDRD) Chart NC. o o
Process Phase Record (PHRCD) Chart

ND o o o o o o o o o o « o o s = o

RID Formatting (RIDFMT) Chart NG. .

Move R/F and A/0 to Buffer
(MOVRFAO) Chart NK. . « .« . .
Process Flag (RAO) Chart NL
Test for End-of-Record (ENDTST)
Chart NM e o
End of RLD's (LNDPH) Chart NN « o o
Subroutines for Pass 3, Coreload 1.

Pass 3-Coreload 2. e o o e
Initialization (START) Charts PA—PC
Match RLD to TXT (RLDTST) Chart PD.
Relocate Constant (SUBSTI) Chart PE
Extra Read (EXTREAD) Chart PF . . .
Get Next RLD (UPDATE) Chart PG. . .
End of Processing (ENDPHA) Chart PH
Subroutines for Pass 3, Coreload 2.

Pass 4 « o o . .« o
Linkage Edltor ($LINKEDTL) Chart QA

LIBRARIAN. « 2 o o o« o o o o o o o o «

72
72

72
73

T4
74

T4

81

81
82

82
82

84
8u

4 IBM S/360 BOS System Control (16K Tape)

Library Format « « o ¢« o o o o o o« o« «
Source Statement Library.
Relocatable Library . « « « ¢ « o+
Core Image Library. . « « « « « < .

Librarian Maintenance - MAINT.
Read Librarian Control
Cards Charts SA to SD.

EOJ (Write Last Record) Chart SE. .
Error Message Subroutine Chart SF.
Find Library Subroutine Chart SG. .
Execute Channel Program

Subroutine Charts SH and SJ
Copy Complete Library Chart SK . .
Analysis to Fetch Phases Charts SL
to SP. .« o o
MAINTC Charts SQ to SS o o
MAINTR Charts TA to TG . +« - « «
MAINTS Charts UA to UJ . .

e o e o

Librarian Directory Service (DSERV). .
Read Control Cards Charts VA and
VB ¢ o o @« ¢ @ o o o o » . e .
Error Message Subroutine Chart VC.
Find Library Subroutine Chart VD .
Execute Channel Program
Subroutine Charts VE and VF
Display CD Chart VG. « ¢ o o « « &
Display RD Chart VH. « « « « « . .
Display SD Chart VJ. ¢« « o o « « «

Relocatable Library Service (RSERV). .
Read Control Cards Charts WA to WC
Locate Module Header Chart WD. . .
Analyze Library Record Chart WE. .
Process ESD Chart WF « « ¢« « « «
Process RLD Chart WG « « « « « o &«
Process TXT Chart WH. . . o o .
Error Message Subroutine Chart WJ.
Find Library Subroutine Chart WK .
Execute Channel Program

Subroutine Charts WL and WM

Source Statement Library Service
(SSERV) e o o e e * s e e o e o e o =
Initialize and Read Control
Card Chart XA ¢ ¢ v o o o o o « =
Output Library Records Chart
End of Book Chart XC
Output Subroutines Chart XD. .
Input Subroutines Chart XE . .
Find Book Subroutine Chart XF .
Header Subroutine Chart XG. . .

o o
« o
- o
. e
-

Space Control Subroutines Chart XH
Error Message Subroutine Chart XJ.
APPENDIX A. FLOWCHART LABELS.
APPENDIX B. FLOWCHART ABBREVIATIONS .
APPENDIX C. FLOWCHART SYMBOLS
APPENDIX D. PHYSICAL IOCS FIELDS. . .
APPENDIX E. FORMAT OF LANGUAGE
TRANSLATOR OUTPUT CARDS AND THE USER
REPLACE CARD. .« &« ¢ ¢ « ¢ o o « o &
INDEX. « o o ¢ o o o o o o o o o o o =«

. 92
. 92
. 94
. 95

. 96

.100
.100
.100
.101

.101
.101

.101
.102
.103
.104

.106

.106
-107
.107

.107
.107
.108
.108

.108
.108
.109
.109
.110
.110
.110
.111
.111

.111

.111

.111
.113
.113
113
.113
-113
.114
.114
.114

.115
.126
127
.128

.130
.327

7N

Figure 1. System Control Component
Interrelationship

Figure 2. System Residence.
Figure 3. System Core Allocation. . .
Figure 4. System I/0: Possible

Logical Unit and Allowable Device
USAgE &« o o = o o o 2 o o « o o o o «

Figure 5. Supervisor Core Allocation.
Figure 6. Supervisor Constant Areas .
Figure 7. Supervisor Communications

Region (Part 1 of 2). < . « . . « . .
Fiqgure 7. Supervisor Communications
Region (Part 2 of 2). <« . ¢« o ¢ o < &

Figure 8. PUB Device Type . «
Figure 9. PUB Channel Scheduler Flag.
Figure 10. PUB Job Control Flag . . .
Figqure 11. JIB Flag Byte.
Figure 12. Logical Unit Names
Figure 13. LUB Flag Byte. «
Figure 14. 1I/0 Tables and Pointers. .
Fiqure 15. 1I/0 Sample Table
Figure 16. I/0 Table Entries. . .
Figure 17. 1I/0 Interrupt: CSwW TeStlng
Figure 18. Tape Error Recovery

ProcedUreS. « « « o =« o« « o o o o o =
Figure 19. Error Message from the
Message Writer. « o .
Figure 20. Devices Supported by
Device EXror RECOVELY . « « « « » = o
Figure 21. Device Error Recovery
Procedures. .« « « « o« o « o o = o = =

Figure 22. Checkpoint Field
Figure 23. Cancel Codes . « . « « « =«
Figure 24. Supervisor Generation

MAaCYOSe o o o = o o 2 a s o o « o = =

Figure 25. Job Control Program Flow .
Figure 26. Job Control I/0 Flow . . .
Figure 27. Job Control Core

Allocation. « « « @ ¢ ¢ 4 ¢« ¢ 4 o o .
Figure 28. Job Control Switch Bytes .
Figure 29. Job Control Statement

Search Table. « ¢ « « o ¢ o o « o o =

FIGURES

Figure 30. I/0 Table Entries for an
Alternate Assignment. o o e
Figure 31. I/O Table kntries for a
Temporary Assignment.
Figure 32. Job Control Options. . . .
Figure 33. Calculation of Actual Time
Of DAYe o o o o o o o o o o o o s o o
Figure 34. Work Areas LOGUNT and
UNCLOR: o « « « o o o = o s e o o o @
Figure 35. Concatenation.
Figure 36. IPL Proygyram Flow
Figure 37. IPL Hardware Load. . . . =
Figure 38. S$$ASIPL1 . . <« ¢ o « « o «
Figure 39. $$AS$IPL2 e s e
Figure 40. Module-Phase Relatlonshlp.
Figure 41. Linkage Editor Program
Flow (Part 1 of 2). o « &« « ¢« « « . .
Figure 41. Linkage Editor Program
Flow (Part 2 of 2). . . & ¢ ¢« & « o« .
Figure 42. Linkage Editor Core
AlloCcation. « « o ¢ o o o o 2 o o o o
Figure 43. Linkage Editor I/0 Flow. .
Figure 44. ESD Control Dictionary
Decision Table. « .+ « ¢ & ¢« ¢ o & .
Figure 45. Backward Origin in Linkage
Editor Pass 2+ . e o o o
Figure 46. System Flow and System

Libraries .

* e 8 e e e ©°o e & e o e =

Figure 47. Source Statement Library .
Figure 48. Relocatable Library. . . .
Figure 49. Core Image Library
Figure 50. Librarian Maintenance Core
AllocCatiOne « « « o o o o o o o « o
Figure 51. Librarian Maintenance
Program Flow. . « ¢ ¢ ¢« & &« o o+ . .
Figure 52. Librarian Maintenance I/O
Flow. . . . - . . e e o o @
Figure 53. MAINT Sw1tches . o . .
Figure 54. Passes 1 and 2 of MAINTS .
Figure 55. DSERV Program and 1/0 Flow
Figure 56. RSERV Program and I/0 Flow
Figure 57. SSERV Program and I/0 Flow

FIGURES

. 51

. 69
. 71

. 92
. 93
- 94
. 95

.105
.106
.108
.112

5

CHARTS

Supervisor

Chart AA.

Chart AB. Act
Chart AC. 1I/O
Chart AD. Uni

Chart
Inter

Chart

Chart

Chart

BA-BF.
rupt . .

ual I/0. .
Interrupt
t Check

Channel Scheduler

Supervisor Call

o e e .

BG. Fetch Subroutine .
BH. External Interrupt;

Pro
In

gram Check
terrupt. .

CA-CD. Tape Error
Recovery . .

Type A Transients

Chart
Chart

CE-CG.
CH-CK.

Recovery . .

Message Writer .

Device Error

- e . o« e

Type B Transients . . .

es

o e e
.
o e

o e
« e o

o .
o o e

RSTRT

Chart DA. Checkpoint. .

Chart DB. Cancel . . .

Chart DC. Dump

Chart DD. Dump Subroutin

Chart DE. Illegal SVC .

Chart DF. Job Control Open.

Chart DG. Message Input

Chart DH. Program Check

Chart DJ. Restart . . .

Chart DK. End of Volume

Job Control

Chart EA. Initialization

Chart EB. Input

Chart EC. ACTION, ENTRY, PHASE
INCLUD . & ¢ o o o o o & .

Chart ED-EF. ASSGN

Chart EG. CANCEL, CLOSE, DATE

Chart EH. DVCDN, DVCUP,

Chart EJ. End of Job .

Chart EK. EXEC; Fetch .

Chart EL. JOB

Chart EM. LISTIO. . . .

Chart EN. LOG,MTC,NMTLB,

"NOLOG v v v ¢ o o o o &

Chart EP. OPTION . . .

Chart EQ. PAUSE, RESET,

Chart ER. SET, UPSI . .

Chart ES. TPLAB, VOL .

Chart FA-FG. Job Control
Subroutines e e e e e

IPL

Chart GA. Bootstrap and

System Load

. . « e e

Chart GB. Build PUB Subroutine.
Chart GC. System
Initialization

Chart
Chart

GD. Read Subroutine . .
GE. Scan Subroutine . .

-

133
134
135
136

137-142
143
144

145-148

149-151

152-154

155
156
157
158
159
160

l6l"

162
163
l64

165
166

167
168
171
172
173
174
175
176

177
178
179
181

182

189
190

191
192
193

6 IBM S/360 BOS System Control (16K Tape)

Chart GF.

ADD Statement

Subroutine. e e e .

Chart GG.

DEL Statement

Subroutine. . . . e e e .

Chart GH.

Subroutine

SET Statement

e e o e e e e e o

Linkage Editor
(Pass 1 Coreload 1)

Chart JA. I/O Initialization. .
Chart JB. Storage
Initialization.
Chart JC. Get Card
Processor ¢ &« . .
Chart JD. Fetch Subroutines . .
Chart JkE. Input Subroutine. . .
Cnart JF. Get Record
Subroutine.
Chart JG. Relocatable Library
Label Check
Chart JH. Identify Control
Card. . . . e e e e e e e e .
Chart JJ. Position to Operand
Subroutine. . . . e e e e

Chart JK-JL. INCLUD

Chart JM.
Chart JN.
Chart JP.
Chart JQ.
Chart JR.
Chart JS.
Control Di

Linkage Edi

Scan Card Subroutine.
ACTION. . v v o o « &
AUTOLINK. . . .+ . . .
Nesting Subroutines .
I/0 Subroutine. . . .
ESID Number to

ctionary Subroutine .

tor

(Pass 1 Coreload 2)
Chart KA-KH. ESD« . .
Chart RJ. TXT « « « « .
Chart KK-KL. RLD., . « ¢« « o « &
Chart KM. END ¢ « + «
Chart KN. REP « « +«
Linkage Editor

(Pass 1 Coreload 3)
Chart LA-LE. PHASE,
Chart LG. Determine Transfer
AddreSS v« ¢ ¢« ¢ + o s s e 4 . .
Chart LH. ENTRY . . « ¢ ¢ « « .
Linkage Editor

(Pass 2)
Chart MA. Condense Control . .
Dictionary . .« « « « o o « o &
Chart MB. Read TXT Records. . .
Chart MC. Write Core Image
BlockS . ¢ ¢« 4 ¢ v 4 4 e e e W
Chart MD. Get Transfer

Address . . . e e e e e e .

Chart ME-MF. MAP. . . . « ¢ « .

Chart MG.

PRINT Subroutine. . .

194
195

196

197
198
199
200
201
202
203
204
205
206
208

209
210
212

213

214
222
223
225
226

225

232
233

234
235

236
237

238
240

Linkage Editor
(Pass 3 Coreload 1)

Chart NA. Initialization . . .
Chart NB. . Compute Buffer Size.
Chart NC.. Read RLD Record. . .
Chart ND. Process PHASE Record
Chart NE. Print Header
Subroutine
Chart NF. Build Header
Subroutine
Chart NG. RLD Formatting .
Chart NH. ESD Check
Subroutine < . .
Chart NJ. Get Relocation

Factor Subroutine.
Chart NK. Move Relocation
Factor and Assembled Origin.

Chart NL. Process Flag . .
Chart NM. Test for Record
End.e ¢« ¢ ¢« ¢« o o o o o o o
Chart NN. End of RLD's . . .

Linkage Editor
(Pass 3 Coreload 2)
Chart PA-PC. Initialization.

Chart PD. Match RLD to TXT .
Chart PE. Relocate Constant.
Chart PF. Extra Read
Chart PG. Get Next RLD . . .
Chart PH. End of Processing.
Linkage Editor

(Pass 4)
Chart QA. Pass 4
MAINT
Chart SA. Read Control Card.
Chart SB. Determine Exit . .
Chart SC. Process First Card
Chart SD. Scan Subroutines .
Chart SE. End of Job
Chart SF. Error Message

Subroutine
Chart SG. Find Library

Subroutine
Chart SH. Execute Channel

Program Subroutine . .

.

Chart SJ. Reposition SYSRES

for EXCP
Chart SK. Copy Complete Library.
Chart SL. Fetch for Core

Image Library. . . .
Chart SM. Fetch for Relocatable
Library « « « « « . .
Chart SN. Fetch for Source

Statement Library.
End of Fetch . . .

Chart SP.

MAINTC

Chart SQ. Catalog IPLs and
Supervisor ¢ . . .

Chart SR. Catalog.
Chart SS. Delete

MAINTR

Chart TA. Initialization . .

Chart TB. Catalog

Chart TC. Delete

241
242
243
244

245

246
247

248
249

250
251

252
253

254
257
258
259
260
261

262

263
264
265
266
267

268
269
270

271
272

273
274

275
276

277
278
279

280
281
282

Chart TD. Catalog ESD.
Chart TE. Catalog RLD.
Chart TF. Catalog TXT.
Chart TG. I/O Subroutines. . .
MAINTS
Chart UA. Catalog.
Chart UB. Delete
Chart UC. Do I/O
Chart UD. End of Book.
Chart UE. Update Directory . .
Chart UF. Compress Book. . . .
Chart UG. Analyze BKEND. . . .
Chart UH. Finish Directory .
Chart UJ. Build New lerary. .
DSERV
Chart VA. Read Control Card, .
Chart VB. Scan Subroutines . .
Chart VC. Error Messsage . . .
Subroutine
Chart VD. Find Library
Subroutine
Chart VE. Execute Channel

Program Subroutine . . . - .

Chart VF. Reposition SYSRLS
for EXCP e . .
Chart VG. Display Core Image
Directory.
Chart VH. Display Relocatable
Directory «
Chart VvJ. Display Source
Statement Directory.
RSERV
Chart WA. Read Control Card. .
Chart WB. Analyze Operands . .
Chart WC. Scan Subroutine . .
Chart WD. Locate Module Header
Chart WE. Analyze Relocatable
Library Record . . e e e e
Chart WF. Process ESD e e e e
Chart WG. Process RLD., . . .
Chart WH. Process TXT and REP
Chart WJ. Error Message
Subroutine
Chart WK. Find Library
Subroutine
Chart WL. Execute Channel

Program Subroutine

Chart WM. Reposition SYSRES
for EXCP « ¢« « « <« . .
SSERV

Chart XA. Read Control Card;

Determine Operation

Chart XB. Fill Buffers
Chart XC. End of Book.
Chart XD. Output Subroutines .
Chart XE. Input Subroutines. .
Chart XF. Find Book Subroutine
Chart XG. Write Header

Subroutine
Chart XH. Space Control

Subroutine
Chart XJ. Error Message
Subroutine

283
284
285
286

287
288
289
290
291
292
293
294
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

316

317
319
320
321
322
323
324

325

7

P

The 16K tape resident version of the IBM
System/360 Basic Operating System is
designed to minimize the time and effort
required by the user to produce and process
programs. Centralized control governs the
execution of all other programs on the
system. Services edit programs for execu-
tion under control and maintain libraries
of programs for the system.

Control programs constitute the frame-
work of System/360 BOS. The Supervisor
handles all interrupts. Job Control pro-
vides program-to-program trancition. IPL
initializes the system, loading the Super-
visor and Job Control.

Service programs preparxe 21l programs
for the system and maintain the system
libraries. Linkage Editor edits language
processor output for execution under the
system Supervisor. Librarian maintenance
includes items in, or deletes items from,
the system libraries. Librarian service
provides information on the contents of the
system libraries.

Figure 1 shows the relationship between
these system components.

SYSTEM RESIDENCE

The system control programs reside on a
tape along with other IBM programs and user
programs in the system. The tape records
are divided into three libraries.

Core Image Library; Programs ready for
execution; output from the Linkage Editor.

Relocatable Library; Program modules that
have not been edited to run under the
Supervisor; output from the language proc-
essors; input to the Linkage Editor.

Source Statement Library; Library routines
in source language (e.g., macros); input to
the language processors.

IBM SYSTEM/360 BOS, SYSTEM CONTROL (16K TAPE)

Figure 2 shows the organization of the
residence tape. The tape unit is assigned
to the logical unit SYSRES. The relocat-
able and source statement libraries may be
on independent tapes assigned to SYSRLB and
SYSSLB, respectively.

Along with the Supervisor in the core
image library are a Job Control, IPL, Link-
age Editor and Librarian edited to run with
the Supervisor. A new Supervisor can be
generated from the system generation macros
in the source statement library. Then
revised versions of the system control and
service programs must be edited into the
core image library from modules provided in
the relocatable library.

SYSTEM CORE ALLOCATION

Under System/360 BOS control main storage
is divided into two parts as in Figure 3.
Low core is reserved for the Supervisor and
transient routines. High core is called
the problem program area.

The user can specify the point of divi-
sion at system generation time.

SYSTEM 1/0

All input and output under Supervisor con-
trol is done in reference to logical units
with names of the form °*SYSXXX®*. The I1I/0
tables in the Supervisor define the rela-
tionship between logical units (LUB's) and
physical devices (PUB's), according to the
assignments made in the system or by the
user. Figure 4 shows the logical units
referenced by each of the system programs
and the devices which may be assigned to
them.

Introduction 9

(Hardware Load ’

IPL Job Control

Linkage Editor

[——e-{

(Program Interrupt)

Librarian Program

——

Supervisor

Other IBM
Problem Program

‘Return or Error Exii)

User
Problem Program

Figure 1. System Control Component Inter-

relationship

10 IBM S/360 BOS System Control (16K Tape)

Relocatable
Library
Modules

Figure 2.

Initial IPL Records

Supervisor

$$A - SUPVR Transients
\ $$B - SUPVR Transients \

\ IPL \
e\

Linkage Editor

Other Problem Programs w

Including Librarian
Programs and IBM Processors

—T

Program Modules Including
IBM Programs

[! _/
Assembly Sublibrary:

Macros Including SYSGEN
and Supervisor Macros

COBOL Sublibrary

System Residence

-

Core
Image
Library
Phases

Source
Statement
Library
Books

N

System Constants; Communication Region; 1/O Tables

Interrupt Routines; Physical 10CS SUPERVISOR
g AREA

Supervisor Transient Areas
Division Specified
at System > 3

Generation

Initially JOB CONTROL

Job Control loads into this area: PROBLEM
Linkage Editor > PROGRAM
Librarian Programs AREA

Other IBM Programs
User Programs

Figure 3. System Core Allocation

SYSRDR | SYSIPT | SYSPCH |SYSLST | SYSLOG | SYSRES | SYSSLB | SYSRLB | SYS000 | SYS0O1 | SYS002 | Other
IPL CR K T
Job Control | CR,T CR,T P,T K,P T
Linkage Editor P, T K,P T T T T T
.
CHKPT K,P T
CNCL : P,T K,P
£ 1| pume P,T
2
8 || ILsvc P,T K,P
2
L<
87| Jeoet T T T T , T
z
g || MsGIN K
a
PCHK P,T K,P
PDUMP P,T
RSTRT K,P T
AN
(| MAINT CR,T P,T K,P T T T
MAINTR CR,T CR,T P,T K,P T T T T
§ MAINTS CR,T CR,T P,T K,P T T T T
5 <
8 DSERV CR,T P,T K,P T T T
RSERV CR,T cp,T P,T K,P T T
SSERV CR,T cp,T | pT K,P T T
A\

CR - Card Reader
CP = Card Punch
P - Printer
K = Console
T - Tape

Figure 4. System I/O: Possible Logical Unit and Allowable Device Usage

Introduction 11

CONTROL PROGRAMS

SUPERVISOR

The Supervisor is read into core at IPL
time and remains there throughout system

operation.
four parts:

The Supervisor area consists of

1. Constant areas to describe system oper-

ation.

2. Nucleus of coding to handle interrupts.

3. Type-A transient area to hold physical
I0CS error-routine overlays.

Location O
COMREG

CHNSCH

PTA

LTA

PPBEG=EOSSP PPBEG
if no storage <
protection EOSSP

Figure 5.

12 IBM S/360 BOS System Control (16K Tape)

4. Type-B transient area to hold Supervi-
sor routine overlays. ‘

Figure 5 shows the allocation of core to
the various parts of the Supervisor.

360 Constant Area

Communications Region
and 1/O Tables

Nucleus

Type A Transient Area
504 Bytes

Type B Transient Area
1000 Bytes

Problem
Program
Area

1)

Supervisor Core Allocation

NUCEND

SYSEND

ADDR specified by user
SUPEND

SYSGEN INITIALIZATION
HEX | DECIMAL DEFINITION TO ZEROS EXCEPT FOR
00 00 IPL PSW
08 08 IPL CCW;
Zeros in This System-Location 22
10 16 IPL CCW2 (hex 16) contains address of
communications region
18 24 Extemal Old PSW
20 32 SVC Old PSW
28 40 Program Old PSW
30 48 Machine Old PSW
38 56 1/0 Old PSW
40 64 Csw
48 72 CAW
4C 76 —
50 80 Timer 'FF FF FF FF'y Time-of-day
}-Timer/256
54 84 Time-of-Day '00 FF FF FF') Actual Time-of-day
Addresses EXTINT;
58 88 External New PSW Bit 13 on, Bits 36-39 on
60 9 SVC New PSW Afidresses SVCINT;
Bit 13 on
68 104 Program New PSW A.ddresses PCHECK;
Bit 13 on
. Addresses SETACT
70 112 Machine New PSW (in Unit Check)
78 120 1/O New PSW Afidresses INTERR;
Bit 13 on
Scan Out Area
80 128 and Saved Double
Word
Figure 6. Supervisor Constant Areas

SUPERVISOR (ONSTANT AREAS

An area in low-core is reserved by the
Supervisor for a communications region and
for I/0 tables.

The communications region immediately
follows the System/360 constant areas shown
in Figure 6. The address of the communi-
cations region is always located in decimal
address 22. The user has this address
available through the macro COMREG. Figure
7 displays the information contained in the
communications region.

The I/0 tables follow the communications
region. These tables are necessary for the
execution of I/0 by the Supervisor.

For every device on the system there
must be a physical unit block (PUB). For
every logical unit name (SYSXXX) used by
the programmer, there must be a logical
unit block (LUB).

When the programmer requests I/0, an
entry is made in the channel queue table
(CHANQ). The CCB provided names a logical
unit.

The Supervisor processes the request
when possible on the device assigned to the
logical unit. If the user specifies TEB at
system generation time, counts of tape
errors are kept in tape error blocks
(TEB's) for each tape unit.

PUB's are set up at system generation or
IPL time. LUB's are set up at system gen-
eration. PUB's are assigned to LUB's at
system generation or by the ASSGN routine
in Job Control. Temporary or alternate
assignments require that job information
blocks (JIB's) be attached to LUB's.

CHANQ entries are set up by the Channel
Scheduler routine and processed by the
Actual I/O routine in the Supervisor.

TEB's are used by the Tape Error routine in
the Supervisor.

The elements of each I/O table are des-
cribed in detail in the following sections.
Figure 14 displays the interrelationship of
tables and pointers. Figure 15 is a sample
table. Figure 16 summarizes each table
entry.

Control Programs - Supervisor 13

DECIMAL SYSTEM GENERATION DECIMAL SYSTEM GENERATION
DISPLACEMENT | INITIALIZATION DEFINITION DISPLACEMENT | INITIALIZATION DEFINITION
00 '07/15/65" Job date from DATE statement 54 '00 00' or as specified | Standard job-control options for
third and fourth job-control
08 Y (PPBEG) Address of problem program label switch banks
area; end of transient area +1
56 'C0 00 00 00 Job-control switch bytes:
10 Y (EOSSP) Address of problem program area; detailed description in
if storage-protect, first byte Job Control
having a storage protection key
of 1 60 00 00' Disk address (CC HH) of label
area
12 Zeros Problem program work area
62 A (FOCL)
23 '00’ UPSI byte .
64 A (PUBTAB)
24 'NO NAME' Job name from JOB statement
66 A (FAVP)
32 Hex 3FFF; Dec 16383 | Address of last byte in problem 1/O table addresses
program area 68 A (JIBTAB)
36 Hex 3F10; Dec 16144 | Address of last byte placed in 70 '0000' or A (TEBTAB)
the problem program area by a if TEB specified
FETCH or LOAD
40 Hex 3F10; Dec 16144 | End of longest phase of 72 A (FICL)
problem program 74 A (NICL)
44 '0000' Length of problem program label
area 76 A (LUBTAB)
46 '0000' 78 30 or as specified Line count for SYSLST
48 Hex 3F10; Dec 16144 | Address of last byte of data in 79 ' 07 15 65 166' System date and day of year
SPOOL/Tele-processing area from SET statement
52 '00' or as specified Machine Configuration 88 '00' Cancel code
bit 0 - storage-protection 89 '00'
feature
90 A (ALLRGS) Address of register save area
1 - decimal feature for SVC
2 - floating-point feature 92 '0000' Identification number of last
checkpoint
3-0
94 '0000" Address of SPOOL/Tele-process-
4 - timer feature ing data
5 = channel switchable de- 96 A (DSKPOS) Address of disk 1/O position
vice support : data
6 - burst/multiplex device 98 A (ERBLOC) Address of channel scheduler
support error data
7-0
53 100" or '80" Date configuration: MDY or Figure 7. Supervisor Communications Region
DMY; {Part 2 of 2)
Bits used as switches:
5 - burst/multiplex device
in operation
6 - FETCH/LOAD in opera-
tion
7 = logical transient in op=
eration

Figure 7. Supervisor Communications Region
(Part 1 of 2)

14 IBM S/360 BOS System Control (16K Tape)

CHANQ - CHANNEL QUEUE TABLE

T 1
| USER-SPECIFIED DEVICE TYPE |
| MACRO PARAMETER BYTE IN PUB |
The number of entries is specified at sys- b {
tem generation time. The table must hold | 1050A X'00°* |
all the I/0 requests that await execution b {
at any one time. The entries are refer- | 1050B X*'01°* |
enced by CHANQ pointers 0, 1, 2. b
] 1050C X'02°
Each CHANQ entry consists of 4 bytes: b
0 - chain field; pointer to the next in | 1050D X'03°* |
queue. 'FF' marks the end of a queue. b 4
2-4 - CCB address.] 1050E X'04° |
Associated with each entry is one byte at b 4
LUBPTR and one byte at REQID. IUBPTR is a | 1050F X*05°* |
LUB pointer indicating the logical unit 3 4
making the I/0 request. REQID, if storage- | 1050G X'06°
protection, is a code identifying the b
program making the I/0 request. | 1050H Xx'07°
L
1]
The byte FLPTR contains the pointer to | 2501 X'10°
the next free entry (free list pointer). b 4
The free entries are chained together in a | 2540R X'11’ |
queue to FLPTR as request entries are b i
chained to a PUB. | 2520B2 or 2520B3 X*'20° |
L]
v 1
CHANQ entries are referenced by PUB's | 2540p x'21"
identifying devices awaiting I/0. Channel b
queues are built by the Channel Scheduler | 1442N2 X'22"
routine in the Supervisor. b
| 1442N1 X'30°
L
L]
| 2520B1 X*31° |
PUBTAB ~ PHYSICAL UNIT BLOCK TABLE 3 {
| 1403 or 1404 X'40°' |
L J
1 T
The number of entries is specified at sys- | 1443 or 1445 X4l |
tem generation time. There must be one | i
entry for each device on the system. | 2400T7 or 2400T9 X'50°" |
Entries may be made to the table at system } el
generation time. The operator may add or | UNSP or UNSPB X'FF’]
delete entries at IPL time. The entries L J
are referenced by PUB pointers 0, 1, 2.
Figure 8. PUB Device Type
Each PUB entry consists of 8 bytes:
0 - channel address; 0, 1,----6; °FF' =
null channel address.
1 - unit address. r 1
2 - CHANQ pointer; 0, 1,----; °‘FF' = null |0 - Device busy i
pointer. b
3 - TEB pointer; 0, 1,----; Or error |1 - Switchable device
counter; "00° = null pointer or initial F
counter. {2 - End of file for SYSRDR or SYSIPT
4 - device type (Figure 8). r
5 - device options; '00° (non-tape); °93° |3 - I/0 error recovery outstanding
or user mode (tape). F 4
6 - channel scheduler flag (Figure 9). 14 = ————- |
7 - job control flag { Figure 10). b i
|5 - Device-end posting desired |
The end of the table is denoted by an 3]
"FF'. The eight bytes labeled FOCL specify |6 - Burst/MPX device |
the first PUB on each of the eight possible b {
channels (first on channel list). PUB's |7 - 7-Track tape device |
L J

are referenced by the LUB's to which they
are assigned. Bytes 2, 3, and 6 are modi-
fied by the Channel Scheduler routine. Figure 9. PUB Channel Scheduler Flag
Bytes 5 and 7 are modified by Job Control.

Other bytes remain constant.

Control Programs - Supervisor 15

0-4 - standard-assignment mode for
7-track tape; all bits one if
device is not tape: all bits zero
if device down.

o o e e e ey

|5 - Assigned to a system logical unit
L

1]
|6 - Assigned to a programmer logical unit

7 - —————

L R

Figure 10. PUB Job Control Flag

JIBTAB - JOB INFORMATION BLOCK TABLE

The number of entries is specified at sys-
tem generation time. The table must hold
all the temporary and alternate assignments
that are needed at any one time. The
entries are referenced by JIB pointers 0,
4, 8, etc.

Each JIB entry consists of 4 bytes:

0 - alternate or stored standard PUB
pointer.

1 - '00*' or stored standard LUB flag.

2 - present assignment LUB flag and JIB
flag (Figure 11).

3 - chain field; bit-7-on defined as
end-of-chain.

The byte FAVP contains the pointer to
the next free entry (first available
pointer). The free entries are chained
together to FAVP as assignment entries are
chained to a LUB.

JIB entries are referenced by LUB's to
which temporary and alternate assignments
are made. JIB chains are built by the
ASSGN routine in Job Control.

- present assignment LUB flag bits

o ot e e

stored standard JIB

- alternate JIB

| SO SIpETRp SR S S |

Figure 11. JIB Flag Byte

16 IBM S/360 BOS System Control (16K Tape)

TEBTAB - TAPE ERROR BLOCK TABLE

The TEB table appears if requested at sys-
tem generation time. The number of entries
is specified by the user. There should be
one entry for each tape device in the sys-
tem. The entries are referenced by TEB
pointers 0, 1, 2, etc., in the PUB for each
tape device.

Each TEB entry consists of 6 bytes:
0 - error recovery retry count; 'FF'
indicates a null TEB.

- permanent read error count.

- initial read error count.

initial write error count.

- erase gap count.

- noise record count.

nEWwN e
i

The counters in the TEB are used by the
tape error recovery routine. At end-of-
job, Job Control resets each TEB to its
null form *FF 00 00 00 00 0O°.

LUBTAB - LOGICAL UNIT BLOCK TABLE

The number of entries is specified at
system generation time. A minimum of 15
and a maximum of 255 entries may be speci-
fied. To use a logical unit name, a cor-
responding LUB must appear in the table.
PUB's may be assigned to LUB's at system
generation time. At any time the program-
mer and operator may alter or add to these
assignments through Job Control.

Each entry is referenced by a logical
unit name, SYSXXX. The names are divided
into two classes: system and programmer.
Figure 12 shows the order of the names and
the division between classes.

Each LUB entry consists of 2 bytes:

0 - PUB pointer 0, 1, 2,~---; 'FF' = null
pointer.

1 - LUB flag in first four bits; a JIB
pointer 0, 4, 8,---- in the last four

bits; 1 if no JIB attached.

The eight bytes labeled FICL and NICL
specify the first LUB entry in each class
and the number of entries in that class
(first in class list and number in class

list). Specifically: ‘
» byte 0 - system first in class; must be
'OOI
e byte 1 - programmer first in class;
must be "OA'
s byte 4 - system number in class; must
be *0A*

» byte 5 - programmer number in class;
specified by user.

r T T 1
] |SYSRDR | |
] | SYSIPT | |
| |SYSPCH | |
] | SYSLST | |
System	SYSLOG	
Logical	reserved	required
Unit	SYSRES	LUB's
Class	SYSSLB	
]	SYSRLB	
	SYSUSE	
{svs000		
Programmer	SYS001	
] Logical	8Ys002	
Unit	SYS003	
Class	SYsoo4	
‘ b + {		
	8YS005]
i eesess | oOptional|]
] |sYs2u4 | LUB's |
i 1 L 3

Figure 12. Logical Unit Names

io with null PUB pointer, present
{ assignment IGN rather than UA.
?1 present assignment standard.
EZ standard assignment UA.

[3 standard assignment IGN.

bt e i e i e dith e e

Figure 13. LUB Flag Byte

FICL

NICL

FOCL

LUBTAB
JIBTAB
L e a

e T T

FAVP

[=
PUBTAB

CHANQ
.-
[=

TEBTAB

——d

0 I B

Figure 14. I/0 Tables and Pointers

Control Programs - Supervisor 17

System Generation

Initialization of Tables Sample Table
CHANQ | 01 00 00 00 A request from SYSPCH 01 00 18 40 CHANQ
1102 00 00 00 awaits execution. There 03 00 18 70 1
2|03 00 00 00 are no further requests from | FF 00 1E BO 2
6 Channel 3|04 00 00 00 SYSPCH waiting. Re- 04 00 00 00 3
Queue 4105 00 00 00 quests from SYS002 and 05 00 00 00 4
Entries 5| FF 00 00 00 SY S003 have been com- FF 00 00 00 5
LUBPTR | 00 00 00 00 00 00 pleted. REQID is not used | 0C OD 02 00 00 00 LUBPTR
REQID |00 00 00 00 00 00 (no storage protection 00 00 00 00 00 00 REQID
FLPTR 00 feature). 00 FLPTR
FOCL FF FF FF FF FF FF FF All PUBs are being used to | 00 04 FF FF FF FF FF FOCL
PUBTAB | FF 00 00 00 00 00 00 00 describe devices. There 00 OE FF 00 40 00 00 FC PUBTAB
1 [FF 00 00 00 00 00 00 00 are six tape devices on 00 OC FF 00 11 00 00 FC 1
2 | FF 00 00 00 00 00 00 0O channel one - the user has |00 OD 02 00 21 00 80 FC 2
3 |FF 00 00 00 00 00 00 00 not changed the mode from |00 1F FF 00 00 00 00 FC 3
10 PUBs 4 | FF 00 00 00 00 00 00 00 the assumed reset. SYSLOG| 01 80 FF 00 50 93 00 92 4
5 | FF 00 00 00 00 00 00 00 is a 1052. SYSPCH isa 01 81 FF 00 50 93 00 92 5
6 [FF 00 00 00 00 00 00 00 2540. SYSLSTis a 1403- |01 82 FF 00 50 93 00 92 6
7 | FF 00 00 00 00 00 00 00 1404. SYSRDR and SYSIPT ({01 83 FF 00 50 93 00 92 7
8 | FF 00 00 00 00 00 00 00 are the same device, a 01 84 FF 00 50 93 00 9C 8
9 | FF 00 00 00 00 00 00 00 2540 (SYSIPT has been 01 85 FF 00 50 93 00 9C 9
FF temporarily assigned to a FF
tape.)
FAVP 00 The standard assignment for | 0C FAVP
JIBTAB 00 00 00 04 SYSIPT is stored in the first | 01 41 04 01 JIBTAB
4 100 00 00 08 JIB. Two alternate assign- | 05 00 42 08 4
6 JIBs 8 |00 00 00 OC ments for SYS003 are in 06 00 02 01 8
C |00 00 00 10 the second and third JIBs. |00 00 00 10 C
10 | 00 00 00 14 00 00 00 14 10
14 | 00 00 00 01 00 00 00 O1 14
FICL 00 OA FF FF OA 05 00 00 SYSIPT and SYS003 have 00 OA FF FF 0A 05 00 00 FICL
LUBTAB | FF 61 FF 61 FF 61 FF 61 FF 61 | JIBs. SYSSLB, SYSRLB, 01 41 09 00 02 41 00 41 03 41 | LUBTAB
15 LUBs 5 |FF 61 FF 61 FF 61 FF 61 FF 61 | SYSUSE, and SYS004 are | FF 61 08 41 FF 61 FF 61 FF 615
A | FF 61 FF 61 FF 61 FF 61 FF 61 | unassigned. 04 04 06 41 07 41 05 41 FF 61| A
Figure 15. 1I/0 Sample Table

18 IBM S/360 BOS System Control (16K Tape)

—~

Entry Byte Definition
each CHANQ entry 0 | CHANQ-pointer to next in queue; "FF"
marks end of queue
1
2 CCB address
3
each LUBPTR byte 0 | LUB-pointer indicating logical unit ’
requesting 1/0
each REQID byte 0 | code indicating program requesting 1/0
each PUB entry 0 | channel address; 'FF' is the null
address
1 | unit address
2 | CHANQ-pointer; "FF" is the null pointer
3 TEB-pointer or error counter; "00" is
the null pointer
4 | device-type; see device-type table
5 | device-options; "00" (non-tape), "93"
or user-mode (tape)
6 | channel-scheduler flag
7 | job=control flag
each alternate JIB entry | O | altemate PUB pointer
1 "oo"
2 | present assignment LUB-flag; alternate
JIB flag
3 | JiB-pointer; bit 7 indicates end-of-chain
each stored standard 0
JIB entry standard-assignment LUB entry
1
2 | present assignment LUB-flag; stored-
standard JIB flag
3 | JIB-pointer; bit 7 indicates end-of-chain
each TEB entry 0 | retry count; "FF" is the null TEB
indicator
1 | permanent read error count
2 | initial read emor count
3 | initial write error count
4 | erase gap count
5 | noise record count
each LUB entry 0 | PUB=pointer; "FF" is the null pointer

LUB flag or, if JIB attached, JIB
pointer

Figure 16.

1I/0 Table Entries

SUPERVISOR NUCLEUS

The nucleus is entered whenever an inter-
rupt occurs. The new PSW's shown in Figure
6 show the labels in the nucleus at which
entry is made.

SVC Interrupt (SVCINT - Chart BA): An SVC
0 goes to the Channel Scheduler routine
to make an entry in the channel queue
table. Others fetch or load programs,
transfer from routine to routine, alter
the constant areas, and return to Job
Control on a cancel or end-of-job con-
dition.

External Interrupt (EXTINT - Chart BH): 1If
provided by the user, the Supervisor

gives control to a user routine.

Program Check Interrupt (PCHECK - Chart
BH): If provided by the user, the
Supervisor gives control to a user
routine.

Machine Check Interrupt (SETACT - see Unit
Check Exit Routines): The Supervisor
enters a wait state with *'S' in loca-
tion 1.

1/0 Interrupt (INTERR - Chart AC): The
Supervisor examines the status bits of
the completed I/0 and determines if
another I/0 operation should be start-
ed.

Furthermore, the Supervisor nucleus issues
actual I/0 commands after an SVC 0 if the
170 can be processed immediately, or after
an I/0 interrupt if more I/0 awaits proces-
sing.

described in the order
in the Supervisor:
Scheduler

The routines are
of their occurrence
SVC 0 - Channel
Actual I/0
I/0 Interrupt
Unit Check
SVc 1-21, External, and Program Inter-
rupts
e Tape Error.

Appendix D describes Physical IOCS
fields that must be familiar to the
reader: the 16K Tape CCB, the CCW, the
PSW's, the CAW, and the CSW.

Control Programs - Supervisor 19

CHANNEL SCHEDULER - CHART AA

Objective: To indicate that an I/0 request
has been made by adding an entry to the
channel queue table.

Entry: From the SVC Interrupt routine when
an SVC 0 is identified.

Method: With the SVC 0 used to request
1/0, a CCB is provided. The requesting
program places the CCB address in register
1 and, in the CCB, sets:

e Options - byte 2, bits 3 and 5 and 7.

» Logical unit address - bytes 6 and 7.

e CCW address - bytes 9 and 10 and 11.
The Channel Scheduler resets the remainder
of bytes 2, 3, and 4 to zeros.

This routine uses the logical unit
address to locate the LUB and compute the
LUB pointer. The LUB points to the PUB
assigned to it. The I/0 request is added
to the channel queue for that PUB.

1. FLPTR replaces the end-of-queue pointer
'FF' in the PUB or in the chain field
of the last entry in the queue for that
PUB. This pointer references the new
channel queue entry.

2. The chain field in the new entry repla-
ces FLPTR.

3. The end-of-queue pointer °'FF' and the
address of the CCB replace the fields
in the new entry.

4. The LUB pointer is inserted in the
correct byte of LUBPTR.

If the request is for SYSRES, bit 1 in
JBCSW0 (displacement 56 of the communi-
cations region) is set on.

If the new I/0 request is the first in
the queue and the device is not busy (check
bit 0 in the channel scheduler flag of the
PUB), exit is to the Actual I/0 routine to
perform the I/0 immediately. Otherwise,
control returns to the requesting program.
Registers 1-7 are saved and restored for
that program.

ACTUAL I/0 - CHART AB

Objective: To issue an SIO command,
vided the channel is available.

pro-

Entries:

1. From the Channel Scheduler when an 1/0
request is made for an available
device.

20 IBM S/360 BOS System Control (16K Tape)

2. From the I/0 Interrupt routine when a
channel is freed for use and an I/0
request for an available device on that
channel is awaiting execution.

Method: On entry to this routine, the PUB
table displacement for the device awaiting
I/0 must be in register 3. Register 2 is
initialized to the device address (channel
and unit) from the PUB.

A TCH command is issued to determine if
the channel is available. If.not, and the
device is not switchable, an immediate exit
is taken to the interrupted program. If
the device is switchable (check bit 1 of
the channel scheduler f£lag in the PUB), the
next channel is also checked.

An SIO command is issued unless:

1. The device is for SYSRDR or SYSIPT and
end-of-file has been encountered (input
/& set bit 2 of the channel scheduler
flag in the PUB). Instead control is
given to the I/O Interrupt routine at
GETCHQ to complete I/0 and cancel the
job.

2. The device is a burst/multiplex device
in operation (check bit 5 of the con-
figuration byte, displacement 53 in the
communications region). Instead con-
trol returns to the interrupted pro-
gram.

Before the SI0O command is issued, the
CAW must be set to the correct CCW address.
If the device is tape, the set-mode CCW is
the first to be executed (mode from PUB
device-options byte). Otherwise, the CCW
address is taken from the CCB addressed by
register 1).

After the SIO command is issued, the
condition code is tested:

e Condition code 0. The I/O operation is
proceeding in a normal manner. This
routine sets the device-busy indicator
(bit 0 of the channel scheduler flag in
the PUB). If the device is a
burst/multiplex device, bit 5 of the
configuration byte, displacement 53 in
the communication region, is set on.
Control returns to the interrupted
program.

e Condition code 2. The channel is busy.
control returns to the interrupted
program.

e Condition code 3. The channel is not
operational. Control is given to the
Unit Check routine at IONOP to signal
an error and enter the wait state
through the machine-check new PSW.

e condition code 1. The I/O is complete
and the status has been stored in the
CSW. This routine tests all the status

—

bits (32-47) of the CSW except 33, 35,
40, and 41. If none are on, control
returns to the interrupted routine. If
any are on, control goes to the I/0
Interrupt routine (normal I/O
completion).

Returning the interrupted program from
this routine requires two checks:

1. Check for errors (ignore errors if
interrupted program is the fetch rou-
tine - bit 1 in JBCSWO0). If errors
have been queued, complete pending I/0
by putting the system in wait state and
fetch the required Type-A transient
routine.

2. Check for PIOCS cancel. If the first
bit in the cancel code is on, turn it
off and fetch the Cancel transient
routine.

Return is through the I/0 old PSW. Reg-
isters 1-7 are saved and restored for the
interrupted program.

1I/0 INTERRUPT ~ CHART AC

Objective: To process the CSW bits from
the completed I/0 and to determine if
another I/0 operation should be started.

Entries:

1. From the interrupted program through
the 1/0 new PSW.

2. From the Actual I/0 routine when a
command is completed immediately “and
status bits are set.

Method: If entry is through an I/0 inter-
rupt, registers 2 and 3 must be set. Reg-
ister 2 must contain the device address
(channel and unit) found in the I/0 old
PSW. Register 3 must contain the PUB dis-
placement for the device; the section of
the PUB table for the specified channel is
searched for the specified device. If no
PUB is found, no CSW bits are processed.
An attempt is made to reschedule the chan-
nel at INITRG.

At GETCHQ, the CHANQ entry chained to
the PUB is located and the address of the
CCB placed in register 1. The CSW status
bits are checked in a specified order
(Figure 17). If no error exit is taken, an
attempt is made to reschedule the channel
at INITRG.

The section of the PUB table for the
freed channel is searched for an I/O
request. If one is found for an available
device, the CCB address from the CHANQ
table is put in register 1 and control goes
to the Actual 1I/0 routine. Otherwise,
return is to the interrupted program
through the Actual I/O return routine.

control Programs - Supervisor 21

STATUS
BIT

STATUS

ACTION

44

45

46

Channel data check

Channel control check

Interface control check

Takes 1/0O channel failure exit (CHFAIL) fo signal an error and
enter wait state through the machine check new PSW.

38

42

43

47

Unit check

Program check

Protection check

Chaining check

Exits to unit-check routine (UNTCHK).
If error is recoverable, returns to TSTUEX or SELECT.

32

Attention

Exits to the attention routine (ATTRTN).
Unless interrupted program is the fetch routine, executes the
MSGIN transient routine and returns to the interrupted program.

39

Unit exception

Turns on bits 36 and 37. Continues CSW status test.

36

Channel end

At CHNDRT:

1. Saves CSW information in the CCB.

2. If device assigned to SYSRDR or SYSIPT, checks input and
sets:

a. end-of-file bit 2 in PUB channel scheduler flag on / &.
b. flag bit 17in CCBon /* or /&.
c. unit exception bit 39 in CCBon /* or / &.

. If device end, exits to that routine, step 2b.

Sets device busy bit 0 in the PUB channel scheduler flag.

If device-end-posting desired, exits to device-end, step 2d.
. Sets device-end-posting desired bit 5 in the PUB channel
scheduler flag.

Exifs to attempt to reschedule the channel. No attempt is
made for a multiplex channel unless this is a burst/multiplex
device.

o~ AW

N

37

Device end

1. Turns off device busy bit 0 in the PUB channel scheduler
flag.
2. If device-end-posting desired,

a. saves CSW status bytes in the CCB.

b. turns off device-busy bit 0 and

c. turns off device~end-posting-desired bit 5 in the
channel scheduler flag.

d. zeros PUB error counter unless interrupted program is an
error routine.

e. turns on traffic bit 16 in the CCB.

f. updates PUB CHANQ-pointer to next request.

3. Exits to attempt to reschedule the channel. Only an at-
tempt to reschedule the device is made for a multiplex
channel unless this is a burst/multiplex device.

Figure 17.

170 Interrupt: CSW Testing

22 IBM S/360 BOS System Control (16K Tape)

UNIT CHECK - CHART AD

Objective: To determine action taken on
an I/0 interrupt with:

e unit check

e program check

e protection check

e chaining check.

Entry: From the I/0 Inte2rupt routine
when any of these checks occur.

Method: Before determining the error exit,
device-end and channel-end conditions are
tested. If device-end or control-unit end
and not channel-end, the error flag indi-
cates "ignore®" rather than "retry".

If the user has provided his own unit
heck routine, control returns to the I/0
Interrupt routine with bit 18 on in the
CCB. PIOCS ignores the error.

If PIOCS must process the error, an
error queue entry is built. Only 5 entries
can be handled at once; an attempt to build
more entries creates a cancel condition.
Each entry has 18 bytes:

0-7: Csw, first byte zero.

8-9: address of PUB table entry for
device in error.

10-15: sense information.

16: error flag
(ignore/retry/message-writer).
17: message number.

If the error was either program check or
protection check, exit is 2o the common
routine EXPRG. The errxor flag is set to
call the message writer and, unless the
error is on SYSRES, control returns to the
I/70 Interrupt routine to await completion
of pending I/0 requests before fetching the
message writer. If the error is on SYSRES
or from a fetch on SYS000, the wait state
is entered.

If the error was either unit check or
chaining check, exit is either to the resi-
dent error routine (device is tape) or back
to the I/0 interrupt routine to await com-
pletion of pending I/0 requests before
fetching the device error routine.

Unit Check and Error Recovery Exit Routines

EXCON, EXCON 1, EXCON 2 - continue exit:

1. Restore CSW from error gqueue entry.

2. Release error entry.

3. If device-end or control-unit end,
ignore error and continue testing CSW
in I/0 Interrupt routine (at TSTUEX).

4. If not, set device-end and channel-end.
Ignore error and continue (at TSTUEX).

EXRTY - retry exit:

1. If error f@Pag in error queue entry does
not indicate retry, go to EXCONi.

2. Release error entry. .

3. Save fegisters 2 and 3 and go to STRTIO
in the Actual I/0 routine to retry I/0
reqaest.

EXSIO - start I/0 exity

1. 1Initialize CAW from register 6.

2. Release error entry.

3. Go to STRTIO+6 in the Actual I/0 rou-
tine to issue an 1I/0 request.

EXPRG - program check exit:

1. Turn off retry/ignore bits in error
flag byte of error queue entry.

2. Take equipment check exit.

EXEQU - equipment check exit:

1. ©Set error flag of the error queue entry
€0 call the Message Writer.

2. If error is on SYSRES or grcurred dur-
ing a fetch from SYS000, enter wait
sRate with error codes in locations
0-3.

3. If not, restore registers and return to
SELECT in the I/O Interrupt routine.
After completing the I/0 awaiting exe-
cution, the Message Writer is fetched
to process the error.

IONOP - device not operational:

1. Set error code in location 0 ('02°")
machine check new PSW ('3F°).

2. Save device address in I/0 old PSW.

3. Enter wait state.

and

CHFAIL - I/0 channel failure:

1. Set error code in location 0 ('01°') and
machine check new PSW (°*OF?°).

2. Enter wait state.

SETACT - machine check interrupt:
1. Put *'S' in location 1.
2. Enter wait state.

Exit Subroutines

GETENT: Returns address of desired error
queue entry.

DEQUER: Removes entry from error queue.

RSTREG: Restores registers for return to
I/0 routines.

ERRSIO: Executes error-recovery channel

programs disabled for all system
interruptions. If error occurs,
takes program check exit EXPRG
with error-on-recovery message.

HEADQ (in Tape Error Recovery): Inserts an
I/0 request at the beginning of a
channel queue.

Control Programs - Supervisor 23

SUPERVISOR CALL INTERRUPT - CHARTS BA-BF

Objective: To analyze the SVC code and
transfer control to the proper SVC routine.

Entry: From the interrupted program
through the SVC new PSW.

Method: The interrupt routine checks for a
SVC of 0 and, if present, it branches
directly to the Channel Scheduler to handle
the I/70 command. The SVC old PSW (bytes
32-39) is checked to determine which pro-
gram issued the SVC and whether the SVC was
legal.

The SVC code in the old PSW is used to
enter a branch table of SVC codes and rou-
tine addresses. The address of the speci-
fied SVC routine is picked up and control
goes to the SVC routine.

SVC 1 - Chart BB: Loads and executes a
problem program phase. The Fetch subrou-
tine (Chart BG) loads the problem program
phase. SVC 1 determines the entry point
from the phase header label or from a pa-
rameter in register 0 and places it in
USRPSW. The entry point is checked to make
sure it is beyond the supervisor area. The
phase entry address is loaded as the cur-
rent PSW, and execution of the new phase is
started.

SVC 2 - Chart BB: Loads and executes a
Type-B (synchronous) transient. Type-B
transients may be called by the problem
program, a Type-A transient, or another
Type-B transient. The transient-active
switch is turned on, and the old SVC PSW is
saved. The Fetch subroutine (Chart BG) is
entered at LTFETC, and it loads the Type-B
transient routine called for. LTRPSW con-
tains the starting address for all Type-B
transients. This address is loaded as the
current PSW, and execution of the transient
is started.

SVC 3 - Chart BB: Loads and executes a
Type-A (asynchronous) transient. Type-A
transients may be called by another Type-A
transient but not by a Type-B transient or
the problem program. The old I/0 PSW is
saved, and the Type-A transient-fetch
switch is turned on. After getting the
phase name, the Fetch subroutine (Chart BG)
is entered at PTFETC to load the Type-A
transient routine. The Type-A transient-
fetch switch is turned off and the old SVC
PSW is restored. The load address of the
physical transient is returned in base
register 15 by the Fetch subroutine.
Branching to 8 bytes beyond it starts exe-
cution of the Type-A transient.

SVC 4 - Chart BB: Loads a problem pro-
gram phase, and returns to the calling

24 IBM S/360 BOS System Control (16K Tape)

routine without executing the phase loaded.
The Fetch subroutine (Chart BG) is used to
load the phase. The entry point of the new
phase is returned to register 1. The SVC
old PSW becomes the current PSW and control
is returned to the calling routine.

SVC_5 - Chart BB: Places information
designated by the user (MVCOM macro) into
the communication region. The address of
the information to be moved is placed in
register 13. The address of the communi-
cations region is put in register 14. The
information the user wanted to put in the
communications region is moved into it.
The SVC old PSW becomes the current PSW,
and control is returned to the calling
routine.

SVC 6 - Chart BC: Cancels the problem
program. A cancel code of hex 12 is set in
the communications region, displacement 88.
The Type-B transient-active switch is
turned off. An SVC of 2 fetches the
$$BCNCL routine. On return, register 1
contains the starting address of Job Con-
trol which is placed in JCTPSW. JCTPSW
becomes the current PSW.

SVC 7 - Chart BC; Enters the wait state
until the completion of the I/0 instruction
in progress. The second byte of the CCB
specified by the user in register 1 (WAIT
macro) is tested to see if there is any I1I/0
operation going on. If I/0 is in opera-
tion, bit 14 of the old SVC PSW is turned
on to enter the wait state. If I/0 was not
in operation, the old SVC PSW is not
changed. Making the old SVC PSW the cur-
rent PSW will either put the system in wait
state until an interrupt is encountered
{normally I/0) or return it to the calling
routine.

SVC 8 - Chart BC: Transfers c¢ontrol to
the user after execution of an OPEN, CLOSE,
or EOV transient routine. The old SVC PSW
is saved and the return entry point that
was stored in register 14 is put in USRPSW.
After checking the return address to make
sure it is beyond the supervisor area,
USRPSW becomes the current PSW, and control
is returned to the user program.

SVC 9 - Chart BC: Transfers control
from the problem program to the transient
OPEN, CLOSE, or EOV routines. The address
of the transient routine is put in RTNPSW
by SVC 8 when control is transferred to the
user. SVC 9 makes RTNPSW the current PSW,
transferring control back to the transient
routine.

SVC 10 - Chart BC: Requests an inter-
rupt after a specified time interval. The
user has the option of deciding when to
have timer interrupts. When a SVC 10
occurs, the time for the next interrupt set

by the user in register 1 (SETIME macro) is
stored in hex 50. The new time of day is
set in hex 54. The o0ld SVC PSW becoming
the current PSW transfers control back to
the user's program.

SVvC 11 - Chart BD: Gives the return to
the problem program from a Type-B tran-
sient. The Type-B transient-active switch
is turned off, and registers 2-15 are
restored. LTAPSW, which contains the reen-
try address to the problem program, becomes
the current PSW, and control is returned to
the user.

SVC 12 - Chart BD: Turns off bits spec-
ified by register 1 in the second Job Con-
trol switch (JBCSW1), decimal displacement
57 in the communications region. Registers
8-15 are restored, and the old SVC PSW
becoming the current PSW returns control to
the calling sequence.

SVC 13 - Chart BD: Turns on bits speci-
fied by register 1 in the second Job Con-
trol switch (JBCSW1), decimal displacement
57. Registers B8-15 are restored, and the
old PSW becoming the current PSW returns
control back to the calling sequence.

SVC 14 -~ chart BD: Used for end-of-job
processing. The cancel code is reset to
indicate a normal EOJ, and the Type-B
transient-active switch is reset. An SVC
of 2 fetches the $$BCNCL routine with a
cancel code of 00. On return, register 1
contains the starting address of Job Con-
trol, which is placed in JCTPSW. JCTPSW
becomes the current PSW, transferring con-
trol to Job Control.

SVC 15 - Chart BD: Used to test the
tape position of SYSRES when accessing the
relocatable and source-statement libraries.
SVC 15 tests bit 1 of the first Job Control
switch (IBCSW0), decimal displacement 56 in
the communications region, to see if the
tape-moved-bit indicator is on. If it is
not on, the routine returns to the calling
sequence to reposition the tape back to the
library desired. If the tape-moved bit is
on, the old SVC PSW is saved, and an SVC 0
is issued to execute the CCB the user sets
up for SYSRES. The old SVC PSW becomes the
current PSW and control is returned to the
calling sequence.

SVC 16 - Chart BE: Sets up an entry to
the user's program check routine.

SVC 17 - Chart BE: Provides the return
to the problem program from the user’'s
program check routine.

SVC 18 - Chart BE: Sets up the entry to
the user’s timer routine.

SVC 19 - Chart BE: Provides the return
to the problem program from the user's
timer routine.

SVC 20 - Chart BF: Sets up an entry to
the user's external interrupt routine.

SVC 21 - Chart BF: Provides the return
to the problem program from the user's
external interrupt routine.

ILSVC - Chart BF: The routine that
handles any errors in the supervisor calls.
The transient-active switch is turned off
and $$BCNCL is fetched to cancel the prob-
lem program and call Job Control.

FETCH SUBROUTINE - CHART BG

Objective: To load a transient routine or
problem-program phase.

Entry: From SVC 1, SVC 2, SVC 3, or SVC 4.
Method: The tape that contains the phase
(SYSRES or SYS000) is searched in record
format, looking at the first 61 bytes of
each record for the desired routine. When
the correct header label is read, the phase
is read into storage. When the phase is
loaded, the program returns to the SvVC
routine.

EXTERNAL INTERRUPT - CHART BH

Objective: To establish the cause of the
external interrupt and to service it.

Entry: From the interrupted program
through the external new PSW.

Method: An external interrupt may be
caused by:
¢ a timer interrupt.
o the external interrupt key on the con-
sole.
o an external interrupt signal.

Timer Interrupt: The timer is reset to
its maximum value, and the new time of day
is set. The addresses of the user's timer
routine and save area are set in registers
12 and 13.

External Interrupt Key: The addresses
of the user's key routine and save area are
set in registers 12 and 13.

For either interrupt, the routine and
save-area addresses are checked to be sure
they are within the problem-program area.
The address of the user's routine is set in

Control Programs - Supervisor 25

SVPSW, and making it the current PSW trans-
fers control to the user's external-
interrupt key routine.

1f the user's routine address or save
area are not within the problem program
area, SVPSW contains the address of the
interrupt, and control is transferred back
to the problem program.

External Interrupt Signal: Control
returns to the user. The external
interrupt signal is not supported in this
program.

PROGRAM CHECK INTERRUPT - CHART BH

Objective: To establish whether the user
has a program check routine and transfer to
it, or abort using the IBM routine.

Entry: From the interrupted program
through the program check new PSW.

Method: Control goes to the IBM program-
check routine if the user does not provide
his own routine, or if his routine does not
have a legal address. Otherwise, control
goes to the user program-check routine.

User Routine: The addresses of the
user's program check routine and save area
are put in registers 12 and 13. These
addresses are checked for legality at CHK1.
The address of the user program-check
routine is set in SVPSW. SVPSW becoming
the current PSW transfers control to the
user's program check routine.

26 IBM S/360 BOS System Control (16K Tape)

IBM_Routine; The program-check code
corresponding to the interruption code is
set in the cancel code, byte 88 of the
communications region. The Type-B
transient-active switch is turned off and a
supervisor call of 2 fetches $$BCNCL.
$SBCNCL calls the $$BPCHK program-check
transient, which prints the interrupt and
job cancel message. If requested, the dump
transient will dump the registers and the
problem program area. When all requested
information is received, the program exits
calling Job Control.

TAPE ERROR RECOVERY -~ CHARTS CA-CD
Objective: To test sense data to determine
the tape error recovery procedures.

Entry: From the unit-check routine when a

. unit check or chaining check occurs on a

tape device.

Method: Just before entry to this routine,
a .sense command is issued, initializing
bytes 10-15 of the error queue entry with
sense information. This routine saves the
address of the CCW causing the interruption
in preparation for retrying the I/0 in
error.

The sense bits are then tested in the
order shown in Figure 18. If a retry can
be executed, the retry exit (EXRTY) or the
reposition and retry exit (EXSIO) is taken.
Otherwise, the correct error exit is pro-
vided. If TEB has been specified, error
counts are updated.

TN

SENSE BIT ERROR TYPE RETRY PROCEDURE ERROR EXIT
' (see Unit Check)
Byte 0 Bit 2 | Bus Out Check Reposition tape and retry eight times. Turn | EXEQU
off retry flag.
Byte 0 Bit 3 | Equipment Check EXPRG
Byte 0 Bit 1 | Intervention EXCON if channel
required end, or EXEQU
Byte 0 Bit 5 | Overrun Reposition tape and reiry eight times. Turn | EXEQU
off retry flag.
Byte 0 Bit 4 | Data Check 1. Control Command - Retry 15 times. EXEQU
2. Read Command - Turn on "selected er-
ror" flag.
a. Retry if record length is less than
12 and the sense bit indicating
noise (byte 1 bit 0) is off.
b. Otherwise retry 100 times with re- | EXEQU
positioning performing CRC correc-
tion and tape cleaning every eight
retries. Turn on ignore flag. Turn
off retry flag.
3. Write Command - Backspace erase and EXEQU
retry 15 times. Turn off retry flag.
Byte 0 Bit 7 | Data Converter Post bit 4 in CCB byte 3. EXCON
Check
Byte 0 Bit 0 | Command Reject EXEQU if write
command and file
protect, or EXPRG
CSW status Chaining Check Reposition tape and retfry eight times. Turn | EXEQU
byte off refry flag.
no sense bits EXEQU

Figqure 18.

Tape Error Recovery Procedures

Control Programs - Supervisor

27

PHYSICAL IOCS ERROR TRANSIENT ROUTINES

This group of Type-A transient routines is
used by the Supervisor nucleus to process
I/0 errors on devices other than the resi-
dent device (tape). These routines issue
an error message and determine the error
exit.

The Supervisor communications region
displacement 98 contains the address of a
block of information in the unit-check
routine providing these transients with the
addresses of the error queue entry and the
error exits.

The routines reside in the core image
library. The name of each routine begins
with the characters $$A. Each routine is
read into the Type-A transient area by the
Supervisor nucleus (SVC 3).

MESSAGE WRITER - CHARTS CE-CG

Objective: To write out error information
after an I/0 error has been processed.

Entry: From the Actual I/0 routine when
I/0 has been completed and there are error
queue entries to be processed.

Method: The Message Writer consists of
four overlays which build an error message,
write it on SYSLOG, and if required, accept
an operator response.

Phase 1 ($$ANERRM) of the Message Writer
stores message information in the last 20
bytes of the Type-A transient area as fol-
lows.

Bytes 0-3: the CCB address from the
channel queue entry, if obtainable.

Bytes 4-5: a message number taken from
the error queue entry and converted
to decimal.

Byte 6: operator's action indicator I
(information) or A (action).

Byte 7-8: target indicators C (cancel),
R (retry), and I (ignore).

Bytes 9-18: 10-character message.

If neither the retry nor the ignore bits

are on in the error queue entry, the indi-
cators are set to I and C. If requested by

the user, device-end and selected errors
are posted in the CCB. Exit is to fetch
Phase 2.

Phase 2 (55ANERRN) uses the last 116
bytes of the Type-A transient area to build

28 IBM S/360 BOS System Control (16K Tape)

the error message. In addition to the
information provided by Phase 1, the mes-
sage contains the following.
* The logical unit name and the device
address from the CCB.
¢ The command code from the CCW just
executed.
» The command address, status,
from the CSW.
» The sense bytes from the error queue
entrye.
* The address of the CCB.

and count

Figure 19 is a sample error message.
Exit is to fetch Phase 3.

Phase 3 (S$SANERRO) writes the error
message on SYSLOG, if SYSLOG is assigned.
I1f operator action is expected, exit is to
fetch Phase 4. If the message is for
information, the continue exit is taken
(see EXCON in the Unit Check routine). If
the target indicator is cancel rather than
ignore, the cancel switch is set before
exit.

Phase 4 ($SANERRP) allows operator com-
munication with the error recovery routine.
Locations 0-3 are set with the error mes-
sage number, the operator action indicator,
and the device address. A new PSW that
allows return to this phase is set in the
external new PSW, and wait state is entered
enabled only for external interrupts.

Wwhen an interrupt occurs, control
returns to this phase. A test is made for
the cause of the interrupt. Any cause
other than a key interrupt is saved for
later processing. (The I/0 old PSW and the
external old PSW are interchanged so that
when the I/O interrupt is completed, the
external interrupt will be processed before
returning to the user.)

When a key interrupt occurs, a test is
made to determine if SYSLOG is a 1052. If
not, the operator is expected to have
placed his response in location 4 during
the wait state. Valid responses are:

X'0o1* retry
x*o2* ignore
X*'03" cancel

If no valid response is present, the wait
state is reentered.

If SYSLOG is a 1052, a response is
accepted from the operator. Valid
responses are retry, ignore, and cancel.
An invalid response results in an error
message, and a new operator response is
accepted.

A cancel response sets the cancel switch
and takes the continue exit (see EXCON in
the Unit Check routine). An ignore
response is invalid for certain errors. If
valid, it takes the continue exit. The

retry response is also invalid for certain
errors. If valid, it clears the CCB com-
munications bytes and the retry counter and
takes the retry exit (see EXRTY in the Unit
Check routine).

¥ B3 1
JOP11A |IR DATA CHECK SYS001 = 190 |
] |CCSW = CCW1W2W3 WU WS W6 W7 |
| | SNS = S152S3S455S6 CCB = AAAAAA |
b + {
b + 1
|oP |]standard message code |
L i _'
1] 13

|11 |message number for DATA CHECK }
1 | 4
[3 T 1
1A |operator®'s action indicator |
t. 8 b
|3 1 1
| IR |ignore and retry responses |
| | allowed |
¥ t 1
| S¥YS001 |logical unit in error |
L 1 b |
[T 1
1190 |address of device in error |
L 1 4
¥ T 1
|cc jcommand in error |
i 4]
1 3 1 1
| W=W |CSW information |
= 1 - , 1
|S-5 |sense information]
1 1 3
[4 1 h
|A-A | CCB address |
(- 1 1
Figure 19. Error Message from the Message

Writer

DEVICE ERROR RECCVERY - CHARTS CH~CK

Objective: To test sense data to determine
the error recovery procedures for nontape
devices.

Entry: From the Actual I/0 routine when
I/0 has been completed and there are error
queue entries to be processed.

Method: The device-error routines consist
of two overlays that test the sense infor-
mat ion and determine the error exit.

Phase 1 ($3ANERRU) tests for unknown
devices and impossible sense information.
If valid error information is found, exit
is to Phase 2. Otherwise the program check
error exit (see EXPRG in the Unit Check
routine) is taken. Figure 20 shows the
devices supported and the sense bits recog-
nized on them.

Phase 2 ($3ANERRV) tests the sense
information in the order shown in Figure
21. If a retry can be executed, the retry
exit is taken (see EXRTY in the Unit Check
routine). Otherwise the correct error exit
is provided.

Sense

Device~Bits | 0 |1 12 |3 |4 5|6
1052 X|X|X|X
2501 X|X|X|[X|X]|X
2540R X|X|X|X]|X X
2520p X|X|X|X
2540P X|X|X|X|X X
1442p X|X|X]|X
1442 R/P X|IX|X|X]|X]|X
2520 R/P XX | XX |X]|X
1403 X|X|X|X|[X
1443 X|X|X]|X

Figure 20. Devices Supported by Device

Error Recovery

Control Programs - Supervisor 29

i Error Exit
Sense Bit Error Type Retry Procedure (see Unit Check)
3 Equipment 2540 Reader: EXEQU
Check 2540 Punch: Turn on ignore; turn off retry. EXEQU
1052: Retry once; turn on ignore. EXEQU
1403/1443: Turn on ignore. EXEQU
other: EXEQU
1 Intervention EXCON if channel
Required and device end;
otherwise EXEQU
1052: Turn on ignore. EXEQU
2 Bus Out 1052: Retry once. EXEQU
Check Retry if neither channel nor device end. Other- | ExEQU
wise exit,)
4 Data Check 1403: Turn on ignore; turn off retry. EXEQU
other: EXEQU
5 Overrun EXEQU
0 Command Reject EXPRG
6 Unusual Command EXCON
Sequence
CSW Status | Chaining Check EXEQU
byte
no sense EXEQU
bits
Figure 21. Device Error Recovery Procedures
SUPERVISOR TRANSIENT ROUTINES 11. However, several routines exit to

This group of Type-B transient routines is
used by the Supervisor nucleus to perform
services on request. These services may be
requested by the programmer (PDUMP), by Job
Ccontrol (RSTRT), or by the Supervisor
nucleus itself (PCHK).

The routines reside in the core image
library. The name of each routine begins
with the characters 3$$B. Each routine is
fetched into the Type-B transient area by
the Supervisor nucleus (SVC 2). Normal
return to the Supervisor nucleus is an SVC

30 IBM S/360 BOS System Control (16K Tape)

other areas of the nucleus.

The routines are described in alphameric
order as they appear in the core image
library. Note that some Type-B transients
(for example, $$BOPEN) not included in this
group are described in the IBM System/360
BOS Logical TIOCS 16K Tape PLM, Form
Z24-5018.

CHECKPOINT (3BCHKPT) CHART DA

Objective:
output tape.

To write a checkpoint on an

Entry: Called by a CHKPT macro instruc-
tion. .
Method: A checkpoint is a group of records

containing all necessary information to
duplicate the status of a problem program
on request (RSTRT). The macro provides
this routine with the field shown in Figure
22 (address in register 0).

Tape
Position CHKPT
Restart High-Byte Status Unit
Address Address Address '01' Num
L | |] l |
0 4 8 12 13
Figure 22. Checkpoint Field

The routine adds one to the serial num-
ber of the last checkpoint (displacement
92-93 of the communications region). The
sum is used as the checkpoint identifi-
cation number of the checkpoint being writ-
ten.

The routine first writes a header on the
device specified by the checkpoint unit
number. The header is 20 bytes long.

1. Bytes 1-12 contain /// CHKPT //.

2. Bytes 13-14 contain the number of pro-
gram records.

3. Bytes 15-16 contain the length of the
last program record.

4. Bytes 17-20 contain the checkpoint
record identification number (1, 2, 3,
etc.).

The routine then writes a 123-byte

record saving restart information.

1. Bytes 1-4 contain the address of the
last byte in the checkpoint.

2. Bytes 5-64 contain saved general reg-
isters.

3. Bytes 65-68 contain the address of the
beginning of the CHKPT macro expansion.

4. Bytes 69-123 contain information saved
from the communications region.

Program records follow in blocks of
32,768 bytes (32K). If the last program
record is less than 100 bytes, it is made
to be 100 bytes long by padding. The last
record is a trailer 20 bytes long. The
trailer record is identical to the header
record.

When a checkpoint is taken, the message;
CHKPT XXXXX HAS BEEN TAKEN, is printed. If
the unit for checkpoint is not a tape, the
message: UNIT FOR CHKPT NOT A TAPE - CHKPT
IGNORED, is printed. Return is to the

~ calling routine.

CANCEL ($$BCNCL) CHART DB

Objective: To determine the message and
exit for a preset cancel code in the Super-
visor.

Entry: Called by the CANCEL macro or oper-
ator command (see $$BMSGIN), or by the
Supervisor.

Method: When this routine is entered, a
cancel code of one byte has been placed in
the communications region (displacement
88). This code is used to determine the
action taken by this routine. The null
code is °00'. The legal codes are shown in
Figure 22.

Before the cancel code is analyzed, all
PUBS are checked for I/0 completion. If
the null code is present, there is an
immediate exit to the calling routine after
loading Job Control into the problem pro-
gram area.

The routine then analyzes the cancel
code and takes the action shown in Figure
23. The cancel code and the CATAL switch
in the communications region are reset. If
the dump switch in the communications
region is on, exit is to the dump routine
$$BDUMP. Otherwise, Job Control is loaded
into the problem program area and exit is
to the calling routine.

Control Programs - Supervisor 31

Code Condition Action
01 through OF | Program check Fetch $$BPCHK
10 Illegal SVC Fetch $$BILSVC with register 0 at 1.
11 Phase not found Fetch $$BILSVC with register 0 at O,
Operator intervention Write message‘
2 Programmer request Turn off dump switch and write message
14 Invalid CCB address Write message
15 Undefined logical unit Write message
16 Device not assigned Write message
17 Reading past /& statement | Write message
18 1/O error Write message
19 1/O operator option Write message
1A 1/O error queue overflow | Write message
Figure 23. Cancel Codes

DUMP ($$BDUMP) CHARTS DC AND DD

Objective: To give a dump on SYSLST
(printer or tape) of:

1. General registers

2. Floating point registers

3. Communications region

4. Supervisor and problem program area.

Entry: Called by a DUMP macro or by the
Supervisor.
Method: After initialization for the spec-

ified device, the subroutine PGHD (Chart

DD) writes a header. The number of lines
per page and the heading-line information
are specified in the Supervisor.

Print lines, in which all words are

equal, are condensed as follows:

1. The first word is printed.

2. The second is replaced by --SAME--.
The remainder of the line is blank.

3. No spacing or printing occurs for all
equal lines that follow.

4. Printing and storage-location designa-
tions continue when unequal adjacent
words are encountered.

The last line is printed, equal or not.

32 IBM S/360 BOS System Control (16K Tape)

DUMP exits to Job Control for EOJ when
SYSLST is unassigned or the dump is com-
plete. 1In case of an end-of-reel condition
before DUMP is complete on SYSLST, $$BEOVRT
is called.

END OF VOLUME (3$$BEOVRT) CHART DK

Objective: To cancel the job when a tape
end-of-volume condition is encountered on
SYSLST or SYSPCH.

Entry: Called by another transient or a
problem program not using logical IOCS.

Method: A message is written on SYSLST
indicating job cancellation because of an
end-of-volume condition, and giving the
device address of the unit at end-of-
volume. The unit (SYSLST or SYSPCH) is
closed by writing a tape mark, an end-of-
volume trailer, and two tape marks, and by
rewinding and unloading the tape. The unit
at end-of-volume is unassigned.

A similar message is written on SYSLOG.
The cancel bit and the operator-pause bit
are set on in the Job Control switch bytes
in the Supervisor communications region.
Exit is to Job Control with an SVC 14.

77N

ILLEGAL SVC MESSAGE ($$BILSVC) CHART DE

Objective: To write a message on SYSLOG
and SYSLST when a phase has not been found
or an invalid SVC code has been detected.

Entry: cCalled by $$BCNCL when a phase has
not been found or an invalid SVC code is
detected.

Method: This routine builds the phase-not-
found message or the invalid-SVC message
and prints it on SYSLOG and SYSLST (printer
or tape) along with a job~cancel message.
It sets the cancel switch for Job Control
and exits calling Job Control or the dump
routine (SBDUMP).

JOB CONTROL OPEN FOR TAPE ($$BJCOPT)
CHART DF

Objective: To open I/0 tape units
necessary for system operation.

Entry: Called by Job Control when:

1. SYSRDR, SYSIPT, SYSPCH, or SYSLST is
assigned to a tape unit.

2. the option LINK is present to open

SYS000. Called to open SYS001 and
SYS002.
Method: After initializing the CCB and

CCW, the PUB for the device to be opened is
located for the device address. A rewind
command is issued.

If the tape is an output file, the rou-
tine checks that the tape is not file-
protected. In any case the first record is
read. The first read is in standard mode.
1f an I/0 error occurs, a read in user mode
is issued. If an error occurs again, a
read with retries is issued in the standard
mode.

If a unit exception but not a tape mark
occurs, control returns immediately to the
calling routine. If anything else but a
VOL1l label is read, the tape is rewound.
If it is an input file, control returns to
the calling routine. 1If it is an output
file, an error has occurred.

When a VOL1 label is read on an input
file, the tape is positioned beyond all
labels and control returns to the calling
routine.

When a VOL1 label is read on an output
file, the tape is positioned beyond all VOL
labels and checked for an HDR1 label and an
inactive condition. An HDR1 record and a
tape mark are written on the file. If
there are no VOL1 labels on the file, no

HDR1 record is written. Control returns to

the calling program.

When an error occurs because an output
tape is file-protected, an output tape has
no label, or an output tape still active,
control goes to the routine ERROUT, which
lists a message on SYSLOG. If SYSLOG is
not a 1052, the cancel switch is set and
return is to EOJ in Job Control. If SYSLOG
is a 1052, the operator may type a response
of RETRY (rewind and return to sense file
protect) or IGNORE (write HDR1 label and
tape mark and return to the calling
routine). IGNORE is not a valid response
for the error condition of attempting to
open a file-protected output file.

MESSAGE INPUT {$$BMSGIN) CHART DG

Objective: To process the following
operator commands:

» Cancel

e Pause

» Log/Nolog

Entry: Called by the I/0 Interrupt routine
on an attention signal.

Method; SYSLOG must be assigned a 1052.
If not, control returns to the calling
routine. Otherwise, a ready message is
written on SYSLOG and an operator entry is
read.

If no entry is made, control is returned
to the calling routine. A cancel entry
fetches the cancel routine (3BCKCL).
Pause, log, and nolog entries condition a
bit switch for EOJ pause, or a bit switch
for SYSLOG printout, and return to read
another operator command. All other
entries are illegal. An error message is
printed on SYSLOG and a correct command can
be issued.

PROGRAM CHECK ($$BPCHK) CHART DH

Objective: To print a message on SYSLOG
and SYSLST when a program check interrup-
tion occurs.

Entry: Called by $$BCNCL when a program
check interruption occurs.

Method: This routine builds the interrupt
and job-cancel message, and prints on SYS-
LOG and SYSLST (printer or tape). It sets
the cancel switch for Job Control and exits
calling Job Control or the dump routine
($$BDUMP) .

Control Programs - Supervisor 33

PROGRAM DUMP ($$BPDUMP) CHARTS DC AND DB

Objective: To give a dump on SYSLST

(printer or tape) of:

1. General registers

2. Floating point registers

3. Requested portion of main storage
pointed to by register 0.

Entry: Called by a PDUMP macro.

Method: After initialization for the spec-

ified device, the subroutine PGHD (Chart

DB) writes a header. The number of lines

per page and the heading-line information

are specified by the Supervisor.

Print lines, in which all words are
equal, are condensed as follows:
1. The first word is printed.
2. The second is replaced by --SAME--.
Remainder of the line is blank.
3. No spacing or printing occurs for all
equal lines that follow.
4. Printing and storage location designa-
tions continue when unequal adjacent
words are encountered.

The last line is printed, equal or not.

PDUMP exits to Job Control for EOJ when
SYSLST is unassigned or the dump is com-
plete. 1In case of an end-of-reel condition
before DUMP is complete in SYSLST, $$BEOVRT
is called.

RESTART ($$BRSTRT) CHART DJ

Objective: To load a checkpoint from.tape,
and to give control to the new problem
program.
Entry: Called by Job Control.

Method: A checkpoint is a group of records
containing all the necessary information to
duplicate the status of the problem program
at a given time. Job Control provides this
routine with a PUB address in register 2
and the unit number and checkpoint iden-
tification number in register 3. The user
is responsible for rewinding all tapes.

To locate the checkpoint, the tape unit

specified in the PUB is read until a
checkpoint header with the correct checkpo-

34 IBM S/360 BOS System Control (16K Tape)

int identification number is encountered.
The job name in the saved communication
region record must be the same as the cur-
rent job name. The size of the current
problem program area must be equal to or
larger than that of the checkpointed prob-
lem program area. The size of the current
Supervisor must be equal to the size of the
Supervisor for the checkpointed program.

When the correct checkpoint is found:

1. The communication region is restored.

2. The problem program is restored.

3. Each logical I0CS file is repositioned
using the block count as specified in
the DTF. A table of DTF addresses for
the files to be repositioned must be
maintained by the user.

4. Each physical IOCS file is repositioned
using a logical unit address, tape mark
count, and record count. A table of
this information must be maintained by
the user.

5. The PSW is prepared with the restart
address.

6. The general registers are restored
after returning to Supervisor control.

MACRO_ROUTINES

Three types of macro instructions are
included in the 16K tape BOS:

» Logical IOCS macros.

¢ System Generation macros.

* Supervisor Communication macros.

A description of the logical IOCS macros is
given by the IBM System/360 BOS Logical
IOCS 16K Tape PLM, Form Z24-5018.

SYSTEM GENERATION MACROS

These routines enable the user to build a
Supervisor according to specifications.
Required macros - SUPVR, CONFG, JCOPT,
IOTAB, PIOCS, and SEND - are the various
sections of the Supervisor. Optional
macros - DVCGEN, ASSGN, and OPTION -~ ini-
tialize tables and flags. Figure 24 shows
the order in which the macros are given and
the sections of the Supervisor they build.

—

~—

f T h] r k] 1

| Macro |Action] |Operation|Operand

L 1 4 1 4 y]

H T 1 r T 1

|SUPVR |Builds System/360 Constant Area | |JCOPT | DECK=YES/NO, LIST=YES/NO, |

! + B | | LISTX=YES/NO, SYM=YES/NO, |

| CONFG |]] | XREF=YES/NO, ERRS=YES/NO, I

| |Build Communications Region | | | CHARSET=48C/60C, LOG=YES/NO, |

|3COPT | | I |DUMP=YES/NO, LINES=nn, |

t } 4 | | DATE=MDY/DMY i

] IOTAB |Builds Null I/0 Tables | L 4 4

I + 1

| DVCGEN| Inserts PUB table entries | From DATE sets configuration byte

} $ 4 (displacement 53).

|]ASSGN |Inserts LUB table entries |

b + 4 From DECK, LIST, LISTX, SYM, XREF, ERRS,

|OPTION|Sets flags to include specified | and CHARSET provides standard setting of

| |interrupt routines | the third Job Control switch (see JBCSW2 in

b } 9 Job Control) in displacement 54.

|PIOCS |Builds Physical IOCS routines]

| | (Channel Scheduler, Actual 1/0, | From DUMP and LOG provides standard

| |I70 Interrupt, and Unit Check) | setting of the fourth Job Control switch

b } 4 {see JBCSW3 in Job_Control) in displacement

|SEND |Builds other interrupt routines | 55.

| Jand the resident error routine. }

| |Sets the beginning of the problem | Generates the remainder of the communi-

| | program area. J cation region. The address of the TEB

L L 4 table is given only if TEB is specified in
the CONFG macro. The number of lines for

Figure 24. Supervisor Generation Macros SYSLST is taken from LINES.

i T
|Operation]Operand
L 4

e

1] v 1 T L)
|Operation|Operand | | IOTAB |MTP=nl1, NTP=n2, PGR=n3, JIB=nl,
r + 1 | | CHANQ=n5
| SUPVR | TAPE |t L
1 1 3
Checks the parameter sizes.
Generates PHASE and CSECT statements. Calls the macro INTEQU which generates
equates for the I/0 tables.
Generates constants to initialize the
System/360 constant area. These are zeros Generates:
except for address of communications 1. a channel gqueue (CHANQ) table
region, timer and time of day, and PSW's. 2. a physical unit block (PUB) table
3. a job information block (JIB) table
4., if requested, a tape error block (TEB)
table
r + 1 5. a logical unit block (LUB) table.
|Operation|Operand]
b + 9 There are n5 CHANQ entries, nl+n2 PUB
| CONFG | MODEL=nn, SP=YES/NO, | entries, n4 JIB entries, nl TEB entries,
| | DEC=YES/NO, FP=YES/NO,] and n3+10 LUB entries.
| | TIMER=YES/NO, CHANSW=YES/NO,]
| | BURSTMX=YES/NO, TEB=YES/NO |
i) 4 r T
| Operat ion |Operand
Determines the origin of the communi- b +
cations region. | DVCGEN | CHUN=X'CUU"*, DVCTYP=XXXXXX, |
] | CHANSW=YES/NO, MODE=X'SS"' |
i L d

Generates a section of the communi-
cations region through the machine configu-
ration byte (displacement 52). The last
byte is initialized from SP, DEC, FP,
TIMER, CHANSW, BURSTMX.

Sets a switch to indicate if the TEB
option is present.

Generates a PUB entry. PUB's are gener-
ated in the order in which the DVCGEN
macros are given.

Bytes 0-1: channel and unit address from
CHUN.

Byte 2: null CHANQ pointer °‘FF'.

Control Programs - Supervisor 35

Byte 3: if tape and TEB option provided,

the next sequential TEB pointer;

otherwise '00°.

if not tape, '00'; if tape and

no MODE given, '93°'; otherwise

Ss from MODE.

Byte 6: channel scheduler flag; bits 1
and 7 set from CHANSW and
DEVTYP.

job control flag '00°'.

Byte 5:

Byte 7:

T T
|Operation|Operand
t 4

b e e e od

1 3 T
| ASSGN | SYSXXX, X'CUU®
L 1

Generates a LUB entry. A DVCGEN macro
must have been given for the the device
specified.

LUB PUB-pointer:
ated in DVCGEN
LUB flag: '41° ‘

Initializes PUB job control flag.

from information gener-

T b
| Operation|Operand |
1 } 4
r T " 1
|0 |0OC=YES/NO, IT=YES/NO, PC‘YES/NO]
L L

Sets switches to include coding for
operator communications external interrupt,
interval timer external interrupt, and
program check interrupt.

r T
|Ooperation|Operand
1 1
1]

|pIOCS

T

| SELCH=YES/NO, SETMOD=YES/NO,
| RWTAU=YES/NO

L

g

g w—

Sets switches to include coding for
selector channel, 7-track tape, and read-
while-write tape control unit.

Calls the macro SGTCHS to include coding
for the Channel Scheduler, Actual 1/0, and
I/0 Interrupt routines.

Calls the macro SGUNCK to include coding
for the Unit Check routine.

¥ T
|Operation}Operand
i

SEND

b e s s

T
| ADDR
L

Calls macros SGTCON, SGFCH, SGSVC, and
SGTPE to include the remainder of the
Supervisor nucleus.

36 IBM S/360 BOS System Control (16K Tape)

Calculates addresses:

NUCEND = last byte of coding in the
Supervisor nucleus.

SYSEND = ADDR-1504; the beginning of the \
transient areas.

PTA = SYSEND; beginning of the Type-A
transient area.

LTA = SYSEND+504; beginning of the Type-B
transient area.

PPBEG = ADDR; beginning of the label
area.

SUPEND = ADDR-1; end of Supervisor.

EOSSP = if no storage-protection, PPBEG;
if storage-protection, the first byte
not storage-protected 0; beginning of
the problem program.

)

SUPERVISOR COMMUNICATION_ MACROS

These routines enable the programmer to
enter or change the Supervisor and to con-
trol program flow.

Macros GETIME, SETIME, COMRG, and MVCOM
provide access to the timer and communi-
cations region in the Supervisor.

¢ GETIME makes available the timer wvalue
in a specified form. (
» SETIME sets the timer to a specified
value through an SVC.
» COMRG makes available the address of
the communications region.
s MVCOM places specified values in the
communications region through an SVC.

Macros FETCH, LOAD, STXIT, EXIT, EOJ,
and CANCEL communicate through an SVC with
program-retrieval, user-interrupt, and
end-of-job routines in the Supervisor.

Macros DUMP, PDUMP, and CHKPT provide
access to an appropriate transient routine
through an SVC.

Macros CCB, EXCP, WAIT, and CHNG com-
municate with the physical IOCS routines in
the Supervisor.

* CCB generates a 1l6-byte channel command
block.

* EXCP initiates the IOCS program through
an SVC.

* WAIT tests the traffic bit in the chan-
nel command block, returning to the
Supervisor through an SVC if it is not
on.

» CHNG generates nothing; it is present
for reasons of compatibility.

Macros CALL, SAVE, and RETURN provide
direct linkage between routines within the (
problem program.

|Name|0perat10n|0perand

11, P2
L

|
|
|
|
-+
[SR S

Checks for the presence of P1. If P1 is
absent, a message is issued and the macro
is ignored.

Notes the number of elements in P2 (may
be zero).

Checks if P1 is a register but not (15),
If not (15), a warning is issued and the
routine continues assuming P1 is (15).

Generates coding which sets register 15
to the routine address (Pl), register 14 to
the return address, and register 1 to the
address of the parameter list. Generates
the parameter list from P2 if P2 is pre-
sent.

1
|Name|Operat10n|Operand |
— + 1
| NAME | CANCEL | |
L L | J
Generates coding which clears register 0
and issues a supervisor call of 6.
r T - H
| Name| Operation|Operand |
1 1 3 4
1 3 B T 1
| CCBN| CCB |SYSXXX, CCWADD, OPTIONS i
L L 1 J

Checks for the presence of CCBN. If
CCBN is absent, a warning is issued and the
routine continues.

NAMOK: Checks type and form of SYSXXX.
If incorrect a warning is issued and the
routine continues, generating X'FFFF' for
the logical unit address.

Calculates unit number and unit type
(system or programmer).

FND: Checks for the presence of CCWADD.
If CCWADD is absent, a warning is issued
and the routine continues assuming CCWADD
is zero. Checks type of CCWADD and issues
warning if type is incorrect.

Checks for the presence of

CKOPT:
OPTIONS. If OPTIONS is absent, it is

assumed zero. If OPTIONS is not in the
proper form (X'nnnn'), a warning is issued
and OPTIONS is assumed 0.

Sets a field of switch values from
OPTIONS.

Generates a 16-byte field with the label
CCBN.

Bytes 0-1: zeros.

Bytes 2-3: switch values from OPTIONS.
Bytes 4-5: =zeros.

Byte 6: unit type from SYSXXX.

Byte 7: unit number from SYSXXX.

Byte 8: =zero.

Bytes 9-11: CCW address from CCWADD.
Bytes 12-15: zeros

|Name|Operat1on|Operand
L

ILAB ICHKPT

DR S

|SYs, RST, END, P
L

Checks form and range (SYS000-SYS245) of
SYS. 1If incorrect, a message is printed
and the macro is ignored.

Generates a 22-byte field: _

Bytes 0-3: from RST a four-byte address
of 'FF' followed by a three-byte reg-
ister number to specify a restart
address.

Bytes 4-7: from END a four-byte address
or 'FF' followed by a three-byte reg-
ister number to specify a high-byte
address (zeros if END not present).

Bytes 8-11: from P a four-byte address
or 'FF' followed by a three-byte reg-
ister number to specify a tape
position-status address (zeros 1f P is
not present).

Byte 12: '01°

Byte 13: the unit number from SYS.

Bytes 14-21. $$BCHKPT

Generates coding which places the
address of the 22-byte field in register 0,
the address of the transient name (byte 14)
in register 1, and a supervisor call of 2.

T
Name|Operation|Operand
1

CHNG

- e —

T
|

4
1
|
L

b e i e

13
| SYSXXX
L

Generates no coding. CHNG is present in
the 16K tape system to be compatible with
the 8K system.

r Al T
|Name|Operation|Operand
(% 4

e e el e

- — 4

L] T
| NAME | COMRG
i i

Generates coding which places the
address of the communications region into
register 1.

Control Programs - Supervisor 37

¥ L . R
| Name| Operation|Operand
i i

1 T T
|Name|Operation|Operand
(s i 4

e Y

|
NAME | DUMP
L

o —

bt e, ol e e

r T T
| NAME| GETIME | PAR
L i i

Generates coding that places into reg-
ister 1 the address of a field containing
the name $$BDUMP and issues a supervisor
call of 2.

L v Ll
| Name | Operation|Operand
L ’ 8 4

L

1] T
| NAME| EOJ
i L

o

Generates a Supervisor call of 14.

r T T
}|Name| Operation|Operand
1

L

L
NAME | EXCP ccB
i

Checks for the presence of CCB. If CCB
is absent, a message is issued and the
macro is ignored.

Generates coding that places the CCB
address in register 1 [it could already be
there if CCB is (1)], and issues a Supervi-
sor call of 0.

T

Operation|Operand
i

E

e o s b b

T
XIT |TY
d

Checks that TY is PC, IT, or OC. If TY
is none of these specifications, a message
is issued and the macro is ignored.

Generates a Supervisor call of 17, 19,
or 21 for PC, IT, or OC, respectively.

& k) v
| Name| Operation|Operand
L 5 R 'y

T S

]]]
| NAME | FETCH |PHNM, ENTRY
L L 5 3

Checks for the presence of PHNM. If
PHNM is absent, a message is issued and the
macro is ignored.

Generates coding that places the address
of the phase name in register 1, the
address of the entry point (zeros if ENTRY
is not specified) in register 0, and issues
a supervisor call of 2.

38 IBM S/360 BOS System Control (16K Tape)

Checks that_ PAR is STANDARD, BINARY, TU,
or blank (blank is same as STANDARD). If
PAR is none of these, a warning is issued
and the routine continues assuming PAR is
STANDARD.

Generates coding that places in register
1 the time of day minus the timer divided
by 256. If PAR is TU, no more coding is
generated.

Generates coding that divides the con-
tents of register 1 by 300 leaving the
number of seconds in register 1. If PAR is
BINARY, no more coding is generated.

Generates coding that:

1. converts to decimal and moves minutes
and seconds into a save area in the
form of OOOMMSS-,

2. converts to decimal and moves to reg-
ister 1 the hours,

3. combines the results in the form of
HHHMMSS- in register 1.

¥ T T
|Name|Operation}Operand
b i }

b . ol e wed

] T T
| NAME | LOAD | PHNM, LDPT
L L i

Checks for the presence of PHNM. If
PHNM is absent, a message is issued and the
macro is ignored.

Generates coding that places the address
ILDPT in register 0 [it could already be
there if LDPT is (0)]. If LDPT is not
specified, zeros are put in register 0.

Generates coding that places the address
PHNM in register 1 and issues a supervisor
call of 4.

¥ T T
|Name|Operation|Operand
L. kR 3

e e e s aued

1]] T
| NAME | MVCOM |TO, LNG, FROM
L i i

Checks that TO, LNG, and FROM are cor-
rect in form and magnitude. If incorrect,
a message is issued and the macro is
ignored.

Generates coding that places the address
FROM in register 0, places the address of a
move instruction containing TO and LNG in
register 1, and issues a supervisor call of
5.

) T Rl
| Name | Operation|Operand
[N 1 4

] T T
| Name | Operation|Operand
L 4 R

R

1] T T
| NAME | PDUMP |START, END
L 1 i

SN S

| D 1 T
| NAME | SETIME | SEC
L i L

Checks for presence of START and END.
If either is absent, a message is issued
and the macro is ignored.

Generates coding that places into reg-
ister 1 the address of a field containing
the name $$BPDUMP, places into register 0
the address of a field containing addresses
START, END, and issues a supervisor call of

Checks for the presence of SEC. If SEC
is absent, a message is issued and the
macro is ignored.

Generates coding that loads the address
of the number of seconds into register 1,
multiplies by 256%300 (result in registers

2. 0 and 1), and issues a supervisor call of
10. ‘
L R h
| Name| Operation|Operand]
e S HE T i
| NAME | RETURN |REGS | | Name | Operation|Operand |
— L e + {
| | STXIT | TY, EN, SV |
Checks REGS for correct form. If incor- L 1 L 4
rect, a warning is issued and the routine
continues assuming the form (R1). Checks that TY is PC, IT, or OC. If TY
is none of these specifications, a message
Checks the type and magnitude of the is issued and the macro is ignored.
first register. If incorrect a warning is
issued and the routine continues assuming Checks for the presence of EN and SV.
the value of R1 is 14. If either is absent a message is issued and
the macro is ignored. If both are absent,
If REGS has only one element (R1), coding is generated to zero registers 0 and
RETURN generates a store-register of R1 1, indicating the user's routine is not to
into a field relative to register 13. The be used.

macro generation is complete.

Checks the type and magnitude of the
second register, considering the value of
the first register. If incorrect a warning
is issued and the routine continues assum-
ing the value of R2 is 12.

Generates a store-multiple-register of
R1, R2 into a field relative to register
13.

1)
| Name OperationTOperand
a— }

| NAME | SAVE
L i

S S —

¥
{REGS
i

This macro is the same as RETURN except
that a load register or a load multiple
registers (rather than a store) is gener-
ated to move the contents of a field rela-
tive to register 13 to REGS.

Generates coding that places the address
of the save area (SV) into register 1,
places the entry point (EN) into register
0, and issues a supervisor call of 16, 18,
or 20 for PC, IT or OC, respectively.

T T . T A)
|Name |Operation| Operand |
L 4 4 4
¥ 1 T 1
| NAME | WALT -jccB |
L 1'% i 3

Checks for the presence of CCB. If CCB

is absent, a message is issued and the
macro is ignored.

Generates coding that places the address
of the CCB into register 1, tests the traf-
fic in that CCB, issues a supervisor call
of 7 if the bit is off, or goes on to the
instruction following the macro if the bit
is on.

Control Programs - Supervisor 39

JOB CONTROL

Job Control provides program-to-program
transition under system control. Each
program execution is called a job step.
Between job steps programmer or operator
statements are read by Job Control and
processed to initialize the system for the
new job or job step.

A series of job steps is called a job.
A JOB statement marks the beginning of a
job. A /& statement marks the end of a
job.

Job control is initially brought into
storage by IPL. An EXEC or RSTRT statement
brings in the new problem program for exe-
cution. At normal end-of-job (EOJ macro)
or abnormal end-of-job (CANCEL transient),
Job Control is brought back into the prob-
lem program area and a new job step begins.

JOB CONTROL - PROGRAM FLOW

Figure 25 shows the program flow of Job
Control. If Job Control is brought into
storage because of an abnormal end-of-job,
the cancel routine is executed. Otherwise,
input statements are read from SYSRDR
(programmer input) or SYSLOG (operator
input).

Control is given to the appropriate
statement routine. If the statement is
EXEC or RSTRT, a new problem program is
brought into storage for execution. Other-
wise, on completion of the statement rou-
tine, another input statement is read.

JOB CONTROL - I/O FLOW

Figure 26 displays the I/0 flow in Job
Control. Essentially operator input and
output is on SYSLOG. Programmer input is

40 IBM S/360 BOS System Control {16K Tape)

from SYSRDR and programmer output is on
SYSLST.

Job Control also performs services for
Linkage Editor. On an INCLUD, data can be
read from SYSIPT. Data and Linkage Editor
control statements can be written on
SYS000.

Furthermore, Job Control opens tape
units assigned to SYSRDR, SYSIPT, SYSPCH or
SYSLST. It opens SYS000 when a LINK or
CATAL option is requested. It performs
tape operations on any specified unit (MTC)
and closes tape units on request (CLOSE).

JOB CONTROL - STORAGE ALLOCATION

Figure 27 displays main storage during
execution of Job Control. Subroutines and
input statement routines appear in alpha-
betical order in storage and are described
in the same order in this publication.

The label area in Job Control is used to
contain information for logical IOCS pro-
vided by the VOL and UPSI statements.
Before fetching a problem program, the
label information is moved up to the label
area following the Supervisor.

Information that must remain in storage
from one job step to another is kept in the
Supervisor communication region, displace-
ment 56-59. Figure 28 defines the signifi-
cance of each bit in these four bytes. 1In
Job Control they are referred to as JBCSWO,
JBCSW1, JBCSW2, and JBCSW3.

VN

(Job Control)

CMNPTR EB

Log
Statement

*See Figure 29 for
routine names and
chart ID's,

Figure 25.

©

JOBCTL EA
Initialize
Check operator
PAUSE
2
Abnormal YES
Entry Cancel SYSRDR
Bit On At EOF
STMTIN EB CANCEL EG EOJRTN EJ
Read a Read SYSRDR Reset for
Job Control To EOF EQOJ, CATAL
Statement if Requested
Was
Command
CANCEL
$$BRSTRT
CCPROC FETCHR EK
Set Search to Fetch New
Skip Operator Problem
Commands Program
*
Process Process Problem
Operator Programmer Program
Command Command

Job control

Program Flow

control Programs - Job Control

41

SYSRDR
/

rogrammer
Statements

SYSLOG

Job Control

Operator
Statements

SYSLST

Programmer
Log

Operator

Linkage
Editor
Input

SYSIPT

Figure 26. Job Control 1I/0 Flow

;l: Supervisor

]

JOBCTL Routine |

7.

1/0O Buffer

Constants

STMTIN Routine, Search Table, CCPROC Routine

Job Control
Subroutines
) (Alphabetic Order)

Error Routines

Job Confrol
Statement Processing Routines
(Alphabetic Order)

FETCHR Routine

Label Area

P

§77#

Figure 27. Job Control Core Allocation

42 IBM S5/360 BOS System Control (16K Tape)

Log

Linkage
Editor
Input

SYS000

JBCSWO JBCSW1

Displacement 56

Displacement 57

JBCSW3
Displacement 59

JBCSW2
Displacement 58

Device

Bit 0 - '80'| FETCH from SYS000/SY SRES LINK/NOLINK) DECK/NODECK | Job Status Bit: on by JOB
Statement; off by /&
Bit 1 - '40'| SYSRES-Position-Changed; on Link Edit Permission Indicator ': LIST/NOLIST DUMP/NODUMP
by SVC 0 for SYSRES; off by ’ an
FETCH or LOAD X
|
Bit 2 - '20'| Job Control Input SYSLOG/ Execute=Catalog Permission LISTX/NOLISTX | Reserved
SYSRDR Indicator J
Bit 3 - '10'| Operator LOG/NOLOG CATAL Indicator SYM/NOSYM Programmer LOG/NOLOG
Bit 4 - '08'|Operator Command/Programmer Supervisor Update Indicator XREF/NOXREF Cancel Indicator
Command
Bit 5 - '04'| Operator PAUSE Indicator Autotest Indicator ERRS/NOERRS LIOCS Switch First=Time
OPEN
Bit 6 - '02' [SYSLOG a Printer n‘% Minimum System Indicator for 48C/60C LIOCS Switch DTFCP
| Linkage Editor
O
Bit 7 - '01' |SYSLOG and SYSLST the Same 5 GO Indicator Reserved Reserved
wv

Note: Slash shows setting as on/off.

Figure 28. Job Control Switch Bytes

JOB CONTROL ROUTINES

JOB CONTROL INITIALIZATION (JOBCTL)
CHART EA

Objective: To initialize between job

steps.

Entry: From the Supervisor when Job Con-
trol is loaded into storage. Loading
occurs at IPL or under ECJ conditions
(dump, cancel, or normal end-of-job).

Method: JOBCTL is executed only once for
each load of Job Control. After initiali-
zation the JOBCTL area is used for 1/0
buffers.

Initialization requires:
1. Setting register values.

2. Calculating the length of the label
area for VOL/TPLAB statements.

3. Setting SYSLOG bits 6 and 7 in JBCSWO.

4. Checking the cancel bit in JBCSW3.
This bit is set in the Supervisor tran-
sient routine $$BCNCL. If set, control
goes directly to the cancel routine
(CANCEL).

5. Checking the assignment for SYSRDR. If
SYSRDR is unassigned, an immediate exit
is taken. If SYSRDR is at EOJ (/&
statement has been read), control is
given to the end-of-job routine
(EOJRTN).

6. Checking the operator pause bit in
JBCSWO. This bit is set in the Super-
visor transient $$BMSGIN. If set, a
message is written on SYSLOG. The read
statement routine (STMTIN) does not
process another statement until the
operator provides input on SYSLOG.

JOBCTL exits to the read statement rou-
tine (STMTIN).

JOB CONTROL INPUT (STMTIN) CHART EB

Objective: To read a statement and trans-
fer control to the correct processing rou-
tine.

Entries:

1. Initially from the Job Control initial-
ization routine (JOBCTL).

2. Thereafter, from any statement process-
ing routine except EXEC or RSTRT.

Control Programs - Job Control 43

Method: STMTIN reads a statement through
the subroutine RDSTMT from either SYSLOG or
SYSRDR, depending on the setting of the Job
Control input bit in JBCSW0. The operator
command bit in JBCSWO0 is set on until a
statement beginning with // is read.

The subroutine SCANR1 locates the first
operand. I1If the whole statement is blank,
control goes to the IGNORE routine where
the Job Control input bit is set off indi-
cating next input to be from SYSRDR. Oth-
erwise, the registers are initialized for
use by the BTLRTN subroutine to search for
a matching operand in TABLEl.

1f the first character of the statement
is blank, the search begins at NOTFRS
excluding the following statements.
e an asterisk. GO to the comment routine
{CMNTPR) .
® a slash-ampersand. Go to the end of
job routine (EOJRTN).
* a slash-asterisk. Go back to STMTIN.
e a slash-slash. GO to CCPROC to revise
search to look for a programmer com-
mand.

At CCPROC, which is located after the
search table, the operator command bit in
JBCSWO0 is turned off, the second operand is
located, and the search is revised to begin
at TABLE2. The search results in a branch
to the correct statement processing rou-
tine.

Note that some commands are both opera-
tor command and programmer command so that
the ranges of the search overlap. The
search must result in a branch to some
routine because the argument of the search
is placed in the search table. If the
argument is not found in the permanent
table, and exit to the error routine NVSTMT
is taken. :

Figure 29 reproduces the search table.
The description of the statement routines
is arranged in alphabetical order.

4y IBM S/360 BOS System Control (16K Tape)

Statement Chart ID
(ACTION EC
CANCEL EG
CLOSE EG
DVCDN EH
Scan for DVCUP EH
Operator < | ENTRY EC
Statement IGNORE EJ
INCLUDE EC
PHASE EC
SET ER
ASSGN ED-EF |)
LISTIO EM
LOG EN
MTC EN
NOLOG EN
PAUSE EQ
\| RESET EQ
DATE EG Scan for
EXEC EK >Programmer
JOB EL Statement
NMTLB EN
OPTION EP
RSTRT EQ
TPLAB ES
UPSI ER
VOL ES /
Figure 29. Job Control Statement Search

Table

ACTION - CHART EC

Objective:
SYS000.

To copy the statement onto
Entry: From the read statement routine
(STMTIN).

This is one of the statements
It is

Met hod:
being processed for Linkage Editor.
logged if required.

The routine tests the LINK bit in
JBCSW1l. This bit is set on after the LINK
or CATAL operand in an OPTION statement has
been recognized and SYS000 has been opened.
It must be on when a Linkage Editor state-
ment is read.

The statement is copied onto SYS000. At
COPYRT the link edit permission bit in
JBCSW1 is turned on to indicate there is
data present on SYS000. Return is to read
another statement (STMTIN).

ASSGN ~ CHARTS ED, EE, EF

Objective:
unit.

To assign a device to a logical

Entry: From the read statement routine
(STMTIN), when an ASSGN is given by the
operator or programmer.

Method: Basically the ASSGN statement must
provide a device, X°CUU’, and a logical
unit, SYSXXX. The ASSGN routine locates
the PUB for the specified device, and
inserts a pointer to the PUB in the LUB for
the specified logical unit.

Instead of a device, X'CUU', one of the
conditions UA or IGN may be assigned to a
logical unit. Then, the ASSGN routine
inserts a null PUB-pointer and sets the
flag in the LUB for the UA or IGN specifi-
cation.

Assignments are temporary or standard.
All assignments made by the programmer
(operator command switch in JBCSW0 off) are
temporary. Assignments made by the opera-
tor are standard unless TEMP is specified.
The current assignment must be considered
when making an assignment. If a temporary
assignment is made, the standard assignment
may have to be saved in a JIB.

Finally, if a tape device is specified,
the ASSGN statement may provide a DEVOPT
field (X'Ss®) for the PUB, or it may speci-
fy that the assignment is alternmate (ALT)
to be saved in a JIB.

Analyze Operands - Chart ED

The statement is logged if required. The
scan subroutine locates the first operand,
which must be the logical unit (SYSXXX).
It is checked by the subroutine CKCVLU,
which initializes the following locations:
LOGUNT - bits 5 or 6 on for system or
programmer logical unit, respective-

1ly-
LOGUNT+1 - logical unit number computed
from XXX.

UNCLOR - numerical combination of LOGUNT
and LOGUNT+1.

STRLUB - address of LUB for the specified
logical unit.

The scan subroutine locates the second
operand, which must be UR, IGN or X°CUU’.
A device specification is checked by the
subroutine CKCVCU. This operand initiali-
zes the following locations:

LOGUNT - bit 0 on if IGN; bit 1 on if UA.
UNT - channel and unit number computed
from CUU.

~chain field in the new JIB.

STRPUB - address of PUB for the specified
device

More operands are not required. If
present, they are saved at the following
locations:

LOGUNT - bit 3 on if ALT.

COMTP7 - DEVOPT code for PUB set from
X*'Ss' specification.

JBCSW0 - operator command bit off if
TEMP.

Check Device Type - Chart EE

If the assignment is not UA or IGN, the PUB
pointer for the LUB is computed from the
PUB address (STRPUB) and saved in STPPTR.
Device type is saved in CFIELD.

If the logical unit is a programmer
unit, it is necessary to check for sYS000.
If the assignment is to SYS000, the 1link
edit bits in JBCSW1 must be reset.

If the logical unit is a system unit, it
is necessary to check the specified device
against a table of possible devices that
can be assigned. If the specified device
is also assigned to another system unit, it
is necessary to check the compatibility of
the new assignment.

Make Alternate Assignment - Chart EE

The logical unit is checked to determine:

e If it is a programmer logical unit.

e If both the device assigned to it and
the device about to be assigned as an
alternate are tape units.

o If its present assignment and the
alternate assignment are both standard
or both temporary.

A JIB is created for the alternate
assignment. If there is already a JIB
pointer in the LUB, the new JIB is found by
locating the end of the current chain,
inserting FAVP to chain to the new JIB, and
then calculating the address of the new
JIB.

If there is no JIB pointer in the LUB,
the new JIB is found by calculating its
address from FAVP, saving the LUB flag in
the JIB, and inserting the JIB pointer in
the LUB.

In either case, FAVP is updated from the
The new JIB is
marked as the end of the chain. The ALT
bit is turned on in the JIB flag. The
PUB-pointer saved in STPPTR is stored in
the first byte of the JIB.

Control Programs - Job Control 45

The assignment is complete. Figure 30
shows the new LUB and JIB entries. Return
is to the read statement routine (STMTIN).

Normal

PUB JIB

Pointer Pointer
s |

Alternate LUB Flag

PUB Alternate

Pointer 00" JIB Flag Chain Field
| I |
Figure 30. 1I/0 Tzble Entries for an Alter-

nate Assignment

Make Normal Assignment - Chart EF

To prepare for making the assignment, any
JIB chains attached must be released. To
release a JIB ig to restore the LUB flag
and make the JIB's in the chain available.
e If present assignment standard and
making standard assignment, release
currant assignment.
If present assignment standard and
making temporary assignment, no need to
release. If a JIB for an ALT is
attached, restore LUB flag.
If present assignment temporary and
making standard assignment, release
chain on standard assignment and then
release and eliminate temporary assign-
ment.
If present assignment temporary and
making temporary assignment, release
temporary assignment.

The Job Control flag in the PUB for the
specified device is reset (bits 5 and 6) by
scanning all LUB's except the one being
assigned for the specified PUB pointer.

When making a_temporary assignment, a
JIB is built unless the present assignment
is UA or IGN. Figure 31 shows the JIB
entry. In any case, bit 1 of the LUB flag
is set off.

PUB JIB * Not set until the final
Pointer* Pointer routine ASSGN,
s |
LUB Flag
Stored Standard
Standard LUB JIB Flag Chain Field
L | | 1
Figure 31. 1I/0 Table Entries for a Tem-
porary Assignment.
46 IBM S/360 BOS System Control (16K Tape)

)

If the assignment is UA or IGN, it is
completed by setting bit 0 in the LUB flag
(UA - off; IGN - on) and putting a null ~
PUB-pointer in the LUB. SYSLOG bits 6 and
7 of JBCSWO are reset if necessary. Return
is to the read statement routine (STMTIN).

When making a standard assignment, bit 1
of the LUB flag is set on. If the assign-
ment is UA or IGN, it is completed by set-
ting the LUB flag (UA - bits 0 and 3 off,
bit 2 on; IGN - bits 0 and 3 on, bit 2 off)
and putting a null PUB-pointer in the LUB.
SYSLOG bits 6 and 7 of JBCSWO are reset if
necessary. Return is to the read statement
routine (STMTIN).

If the assignment is a device, bits 0,
2, and 3 in the LUB flag are set off.

When completing a temporary or standard
device assignment, bit 0 of the LUB flag is
set off and the PUB-pointer (in STPPTR) is
put in the LUB. Several checks are made:

o If assignment was made to SYSLST, the
Job Control line count is reset to
start a new page.

If a tape device was assigned, the
DEVOPT byte in the PUB is initialized.
If the assignment is standard, bits 0-4
of the Job Control flag are also reset.
If a tape device was assigned to
SYSRDR, SYSIPT, SYSPCH, or SYSLST, and
if the tape is at load point, the tape
file is opened by the Supervisor tran-
sient $$BJCOPT.

Bits 5 or 6 of the Job Control flag
byte in the PUB are set from bits 5 and
6 of LOGUNT.

Bits 6 and 7 of JBCSWO (SYSLOG bits)
are reset in case assignments have
changed.

Return is to the read statement routine
(STMTIN).

CANCEL - CHART EG

Objective: To prepare for entry to the
end-of-job routine before normal end-of-
job.

Entries:

1. From the initialization routine
(JOBCTL) when Job Control is entered
with the cancel bit on in JBCSW3.

From the read statement routine
(STMTIN) when the operator issues a
CANCEL command.

From the VOL routine at LBLEXH when the
label area has been exhausted but more
labels are required.

2.

Method:
command,

If the CANCEL is an operator
the cancel indicator in JBCSW3 is

set off and the input indicator in JBCSWO
is set to SYSRDR. A message is written omn
SYSLOG and SYSLST.

The LUB assignments are reset to stand-
ard. If SYSRDR is not already at end-of-
file (/& has been read), statements are
read from SYSKDR until end-of-file is
encountered. Then control goes to the
end-of-job routine (EOJRTN).

CLOSE - CHART EG

Objective: To close tape files on request.
Entry: From the read statement routine
(STMTIN) when the operator issues a CLOSE
command.

Method: The statement is logged if
required. The statement must contain an
operand specifying a logical unit SYSXXX.
The operand is checked and the specified
LUB is located. If SYSXXX is a system
unit, it must be SYSLST or SYSPCH.

The PUB pointed to by the LUB is locat-
ed. It must be a PUB for a tape device.
The routine writes a tape mark, an EOV
trailer in user density and standard mode,
and two tape marks on the device. The tape
is rewound and unloaded.

If SYSXXX is a system logical unit, a
standard assignment of IGN is made to the
logical unit. Exit is to the read state-
ment routine (STMTIN).

CMNTPR - CHART EB

Objective: To write a comment.

Entry: From the read statement routine
(STMTIN) when an * statement is encoun-
tered.

Method: The statement is written on SYSLST
if the programmer LOG bit is on (JBCSW3).
The statement is written on SYSLOG unless
it was read from SYSLOG. Return is to read
another statement (STMTIN).

DATE - CHART EG

Objective: To initialize the job date
field in the communications region.

Entry: From the read statement routine
STMTIN when the programmer provides a DATE
statement.

Method: The statement is logged if
required. The statement must contain an
eight-character operand. The eight charac-
ters are stored in the communications
region (displacement 0). Return is to read
another statement. (STMTIN).

DVCDN - CHART EH

Objective: To adjust a PUB and LUB's to
indicate a device is no longer physically
available for system operations.

Entry: From the read statement routine
(STMTIN) when the operator issues a DVCDN
command.

Method: The statement is logged if
required. All LUB's are reset to their
standard assignments. The statement must
contain an operand specifying a device.

The operand is checked and the PUB for the
device is located. The job control flag in
the PUB is set to all zeros.

The entire LUB table is scanned for
LUB's to which the specified device is
assigned. If one is found, any JIB's
chained to it are released. If the LUB is
a system LUB, it is assigned IGN; if a
programmer LUB it is assigned UA. The
names of the modified LUB's are listed on
SYSLOG.

Bits 6 and 7 of JBCSWO (SYSLOG bits) are
reset in case assignments have changed.
Return is to read another statement
(STMTIN).

DVCUOP - CHART EH

Objective: To adjust a PUB to indicate a
device is available for system operations
after the device has been down.

Entry: From the read statement routine
(STMTIN) when the operator issues a DVCUP
command. :

Method: The statement is logged if
required. The statement must contain an
operand specifying a device. The operand
is checked, and the PUB for the device is
located. The job control flag byte is
reset to 'F8' or, if the device is tape,
from the DEVOPT byte. Return is to read
another statement (STMTIN).

Control Programs - Job Control 47

ENTRY - CHART EC

See ACTIQN.

EOJRTN - CHART EJ

Objectives:
1. To catalog Linkage Editor output if
required.

2. To set end-of-job conditions.
3. To list the TEB®'s (tape error blocks).

Entries:

1. From the initialization routine
(JOBCTL) when Job Control is entered
with SYSRDR at end-of-file (/& has been
read).

2. From the read statement routine
(STMTIN) when a /& statement is encoun-
tered.

3. From CANCEL.

Method: The job status bit in JBCSW3 is
checked. This hit is turned on by a JOB
statement and off by a /& statement. If it
is not on when EOJRTN is entered, the end-
of-file flag in the SYSRDR PUB is turned
off and control returns to read another
statement (STMTIN).

The CATAL bit in JBCSW1 is checked.
This bit is set on after the CATAL operand
in an OPTION statement has been recognized.
It indicates that the Linkage Editor output
on SYS000 is to be cataloged. Control goes
to the MAINT program through a fetch.

Otherwise, the end-of-job conditions are
set. . All LUB's are reset to their
assignments. If SYSIPT is not already at
end-of-file, it is read until a /6§ is
encountered. An end-of-job message is
written on SYSLST and SYSLOG. The option
bits in JBCSW2 and 3 are reset to normal.
The job status bit in JBCSW3 is set off.
The job name is reset to NO NAME.

If there are any TEB's, each PUB entry
is checked for a corresponding TEB. If
there are any nonzero counts other than the
retry count in the TEB, the TEB is listed
on SYSLOG with the counts converted to
decimal.

Finally, all bits in JBCSW1l are set off

except the Autotest indicator. Control
goes to RSTCOM in the JOB routine.

48 IBM S/360 BOS System Control (16K Tape)

EXEC - CHART EK

Objective: To determine the name and loca-
tion of a phase to be fetched.

Entry: From the read statement routine
(STMTIN) when the programmer provides an
EXEC statement.

Method: The statement is logged if
required. If the statement has no operand,
the phase to be executed is Linkage Editor
output on SYS000. The EXEC permission bit
(bit 2 in JBCSW1) must be on. BRits 0 and 1
of JBCSW1 and bit 0 of JBCSWO are set off.
The program name is read from SYS000 and
control goes to FETCHR.

If the statement has an operand, it must
be a name consisting of at least one char-
acter and not more than eight. If the name
is 'LNREDT' or °‘ATLEDT', the link-edit
permission bit (bit 1 in JBCSW1l) must be
on. SYS000 is positioned for a read. 1In
JBCSW1 bit 0 is set on and bit 1 set off.
Control goes to RESFCH to fetch $LNKEDT or
ATLEDT.

If the name is RPG,
RESFCH to fetch RPG1.

control goes to

If the name is not LNKEDT or ATLEDT or
RPG, it is simply moved to the necessary
field. Control goes to RESFCH.

At RESFCH bit 0 of JBCSW0 is set on to

specify a fetch from SYSRES, and control
goes to FETCHR to fetch the named phase.

IGNORE -~ CHART EJ

Objective: To allow further input from
SYSRDR.
Entry: From the read statement routine

(STMTIN) when the operator gives a response
of IGNORE.

Method: The statement is written on
SYSLST. The job control input bit 2 of
JBCSWO is set off to allow input from
SYSRDR. Exit is to read another statement
(STMTIN) .

INCLUD - CHART EC

Objective: If no operand, to copy SYSIPT
on SYS000; if operand, to copy statement on
5YsS000.

Entry: From the read statement routine
(STMTIN) .

Method: This is one of the statements
being processed for Linkage Editor. If the
scan subroutine locates an operand, control
goes directly to the ACTION routine to copy
the statement.

If no operand is found, the statement is
logged if required. The routine tests the
LINK bit in JBCSW1l. This bit is set on
after the LINK or CATAL operand in an
OPTION statement has been recognized and
SYS000 has been opened. It must be on when
a Linkage Editor statement is read.

The routine reads card images from
SYSIPT, and copies them onto SYS000 until
it encounters a /% card in SYSIPT. When
this end-of-file indicator is found, con-
trol goes to COPYRT in the ACTION routine
to turn on the link-edit permission bit in
JBCSW1i. Return is to read another state-
ment (STMTIN).

JOB - CHART EL

Objective: To prepare for starting a new
job.
Entry: From the read statement routine

(STMTIN) when the programmer provides a JOB
statement.

Method: JBCSW1 is reset to zeros. The job
status bit in JBCSW3 is checked. This bit
is set on by a JOB statement and off by a
/& statement. If the bit is on when the
JOB statement is read, the routine simu-
lates end-of-job. SYSRDR is set at end-of-
file, and control goes to the end-of-job
routine (EOJRTN).

All the LUB's are reset to the standard
assignments. A job message is written on
SYSLST and SYSLOG. The job name is put in
the communications region (displacement
24). JBCSW2 and JBCSW3 are reset to the
standard options.

The rest of the routine is common to JOB
and EOJRTN. In the communications region
the job date (displacement 0) is set to
standard, the label area length
(displacement 44) and the checkpoint
jdentification number (displacement 92) and
the user area (displacement 12) are set to
zeros. If this point has been reached by
simulating end-of-job, control returns to
SIMEND to reset the LUB’s and write the job
message.

Otherwise the end-of-file bits (bit 2 of
the channel scheduler flag) in all the
PUB's are set off. If the operator-pause
bit (bit 5 of JBCSWO) is not on, control
returns to read another statement (STMTIN).

If the pause bit is on, a pause message
is written on SYSLOG, and the job control
input bit (bit 2 in JBCSWO0) is set on. The
pause bit is set off. Return is to read
another statement (STMTIN).

LISTIO - CHART EM

Objective: To provide the programmer or
operator with a list of I/0 assignments.

Entry: From the read statement routine
(STMTIN) when the programmer on the opera-
tor issues a LISTIO command.

Method: The statement is written on SYSLOG
if LISTIO is an operator command but input
is from SYSRDR. The statement is written
on SYSLST if LISTIO is a programmer com-
mand.

The statement must contain an operand
that specifies the assignments to be list-
ed. Output is on SYSLST if LISTIO is given
by the programmer, on SYSLOG if LISTIO is
given by the operator.

The operand must be one of five forms:

o SYSXXX (a specific logical unit).
Under the header ®"CH. UNIT", the
assignment of the single unit is list-

ed.
¢ SYS. Under the header "SYSTEM 1I/0
UNITS CH. UNIT", the assignments of

the eight named system logical units
are listed. The sixth and tenth system
logical units are reserved and do not
appear in the listing. The names of
the units are picked up from a table
located at TBRDR.

» PROG. Under the header "PROGRAM 1I/0
UNITS CH. UNIT", the assignments of

all the programmer logical units are
listed. The number of programmer LUB°s
and the location of the first one
(SYS000) is picked up from PGNICL and
PGFICL.

o DOWN. Under the header "DOWN CH.
UNIT", the channel and unit of each PUB
with device-down indicated (job control
flag all zeros) is listed.

o UA. Under the header "UNASSIGNED CH.
UNIT", the channel and unit of each PUB
with the assignment bits off is listed.
The assignment bits are bits 5, 6, and
7 in the job control flag.

Only one operand is expected in the
statement. When the list is complete,
return is to read another statement
(STMTIN).

Control Programs - Job Control 49

LOG - CHART EN

Objective: To indicate that statements and
messages are to be logged on SYSLST or
SYSLOG.

Entry: From the read statement routine
(STMTIN) when the programmer or the opera-
tor issues a LOG command.

Method: If the statement is given by the
programmer, it is logged if required. The
log bit in JBCSW3 (bit 3) is set on to
indicate logging is required on SYSLST. If
the bit was off, the statement is logged on
SYSLST. Return is to read another state-
ment (STMTIN).

If the statement is given by the opera-
tor, it is logged unconditionally on SYSLOG
and, if required, on SYSLST. The log bit
in JBCSWO (bit 3) is set on to indicate
logging is required on SYSLOG. Return is
to read another statement (STMTIN).

MTC - CHART EN

Objective: To execute a tape I/0 control
command on request.

Entry: From the read statement routine
(STMTIN) when the programmer or the opera-
tor issues an MTC command.

"Method: The statement is logged if
required. The statement must contain oper-
ands specifying an I/0 command and a logi-
cal unit (or device if operator command).
The command is located in a table used to
initialize the CCW for the channel program.

If SYSXXX is specified, the device
assigned to it is found. If the operator
specifies CUU, it is assigned to SYSUSE.
In either case the device must be a tape.

If the statement also contains a dupli-
cation factor, the factor is converted to
binary. The command is then executed the
specified number of times. Exit is to the
read statement routine (STMTIN).

NMTLB - CHART EN

Objective: To direct Linkage Editor to
reserve a portion of the label area.
Entry: From the read statement routine

{(STMTIN) when the programmer provides an
NMTLB statement.

50 IBM S/360 BOS System Control (16K Tape)

Method: The statement is logged if
required. The statement must contain an
operand specifying the number of VOL/TPLAB
pairs for which space is to be reserved.
This operand must be from 1 to 3 decimal
characters. It is converted to binary and
multiplied by 80 to get the number of bytes
that must be reserved. If this amount
exceeds the space available, the job is
canceled. Otherwise, return is to read
another statement (STMTIN).

NOLOG - CHART EN

Objective: To indicate that statements and
messages are not to be logged on SYSLST or
SYSLOG.

Entry: From the read statement routine
(STMTIN) when the programmer or the opera-
tor issues a NOLOG command.

Method: The statement is logged if
required. If the statement is given by the
programmer, the log bit in JBCSW3 (bit 3)
is set off to indicate logging is not
required on SYSLST. If the statement is
given by the operator, the log bit in
JBCSWO (bit 3) is set off to indicate log-
ging is not required on SYSLOG. Return is
to read another statement.

OPTION - CHART EP

Objective: To record Job Control options
requested by the programmer.

Entry: From the read statement routine
(STMTIN) when the programmer provides an
OPTION statement.

Method: The statement is logged if
required. An operand is located in the
statement and compared against a table to
find a routine address. The routine is
executed. Return is to locate another
operand. When the routine for the last
operand has been executed, return is to
read another statement (STMTIN).

Each routine sets a bit on or off in one
of the job control flags. Figure 32 shows
the bit set by each option. The following
requests provide further services:

o LOG logs the OPTION statement on SYSLST
if, on entry to the routine, the pro-
grammer log bit was off.

e CATAL opens SYS000 through the tran-
sient $$BJCOPT, and sets bit 0 on and
bits 1 and 2 off in JBCSWl. If the GO
option is given before the CATAL
option, these services are omitted.

7~

—~

o LINK opens SYS000 through the transient
$SBJCOPT, and sets bit 0 on and bits 1
and 2 off in JBCSW1.

o GO sets bits 0 and 1 off and bit 2 on

in JBCSW1.

ELINK/NOLINK I?it 0 in JBCSW1 on/off]
iCATAL ibit 3 in JBCSW1 on }
?MINSYS Ebit 6 in JBCSW1 on 1
| Go Ibit 7 in JBCSW1 on 1
b - i
| DECK/NODECK |bit 0 in JBCSW2 on/off |
iLIST/NOLIST ibit 1 in JBCSW2 on/off 1
{LISTX/NOﬁISTXibit 2 in JBCSW2 on/off 1
{svmxnosym Ebit 3 in JBCSW2 on/off 1
[XREF/NOXREF ibit 4 in JBCSW2 on/off 1
{ERRS/NOERRS Eb't 5 in JBCSW2 on/off]
icuS/cso ibit 6 in JBCSW2 on/off k
{DUMP/NODUMP ibit 1 in JBCSW3 on/oOff 1
{LOG/NOLOG jbit 3 in JBCSW3 on/off j
Figure 32. Job Control Options

PAUSE - CHART EQ

Objective: To cause a request for operator
input immediately (if issued by the
programmer), or before the next job or job
step (if issued by the operator).

Entry: From the read statement routine
(STMTIN) when the programmer or the opera-
tor issues a PAUSE command.

Method: The statement is logged on SYSLOG
and, if required, on SYSLST. If the com-
mand was from the operator, the operator
pause bit in JBCSWO (bit 5) is set on. If
the command was from the programmer, the
job control input bit in JBCSWO (bit 2) is
set on. Return is to read another state-
ment (STMTIN).

PHASE - CHART EC

See ACTION.

RESET - CHART EQ

Objective: To reset all logical unit
assignments to standard.

Entry: From the read statement routine
(STMTIN) when the programmer or operator
issues a RESET command.

Method: The statement is logged if
required. The LUB assignments are reset.
Return is to read another statement
(STMTIN).

RSTRT - CHART EQ

Objective: To give control to the Supervi-
sor transient $$BRSTRT in order to restart
execution of a checkpointed program.

Entry: From the read statement routine
(STMTIN) when the programmer provides a
RSTRT statement.

Method: The statement is logged if
required. The statement must contain two
operands. The first must be the name of

the logical unit on which the checkpoint
was written. The second must be a
4-character serial number used to identify
the checkpoint.

Information is passed to the transient
routine in registers 2 and 3.

o Register 2 contains the address of the
PUB for the device assigned to the
logical unit specified in the first
operand.

o Register 3 contains the address of
UNCLOR. The subroutine CKCVLU {(which
checked and located the LUB for the
specified logical unit) set UNCLOR at
'00' for a system LUB or °01' for a
programmer LUB. The subroutine set
UNCLOR+1 to the logical unit number.
RSTRT puts the checkpoint
identification number in UNCLOR+2.

Control is given to the transient rou-
tine $$BRSTRT through a supervisor call of

SET - CHART ER

Objective: To insert values in specified
fields of the communications region and
system timer.

Entry: From the read statement routine

(STMTIN) when the operator issues a SET
command.

control Programs - Job Control 51

Method: The statement is logged if
required. An operand is located in the
statement and control is given to the rou-
tine associated with one of the four valid
operands. After the routine is executed,
control returns to locate another operand.
If there are no more operands, control
returns to read another statement.

e CLOCK. Following the operand CLOCK
must be a field of the form HH/MM/SS
giving the actual time-of-day in hours,
seconds, and minutes. These values are
converted to binary and added together
in units of 1/300 of a second.

The timer is a negative value in
units of 1/(300*256) of a second. The
time-of-day and the timer divided by
256 are added to get the time-of-day.
The result is stored in the time-of-day
field of the system timer (Figure 33).
The actual time-of-day can be calculat-
ed from the time-of-day minus the timer

converted to hours, minutes, and sec-
onds.
e LINECT. The two-character integer

field following LINECT is converted to
binary and stored in the line count
field of the communications region
(displacement 78). The Job Control
field containing the remaining number
of lines on the page must be adjusted
for the new total number of lines on
the page.

e DATE. Following the operand DATE must
be a field of the form MM/DD/YY or
DD/MM/YY giving the date in month, day,
and year. These values are stored in
the system date field of the communi-
cations region (displacement 79-84).
The day of the year is computed in
binary, then converted to decimal and
stored in displacement 85-87.

e UPSI. The indicators following the
operands UPSI (there must be from 1-8
indicators) are used to modify the bits
of the UPSI byte in the communications
region (displacement 23). The first
indicator modifies bit 0 of the UPSI
byte:

indicator is 1 - bit is set on.
indicator is 0 - bit is set off.
indicator is X - bit is ignored.

If there are fewer than 8 indica-
tors, the corresponding bits in the
UPSI byte are ignored. For example, an
operand XX110 will modify an UPSI byte
of 00001111 to 00110111.

52 IBM S/360 BOS System Control (16K Tape)

System Timer Time~of-Da
L e, T
80 84
Time-of-Day
- Timer/256
Actual Time-of-Day
Figure 33. Calculation of Actual Time of

Day

TPLAB ~ CHART ES

Objective:
label area.

To build a tape label in the

Entry: From the read statement routine
(STMTIN) when the programmer provides a
TPLAB statement.

Method: The VOL and TPLAB statements must
come in ordered pairs. The byte PRVLBL is
set at °01' after each VOL statement. If
PRVLBL is not °'01°', the TPLAB statement is
out of sequence. '

The statement is logged if required. If
the statement is on one card, it contains a
49-character label. 1If it is on two cards,
20 more characters must be read and added
to the first 49. The new label information
is moved to locations 10-78 in the label
already initialized by the VOL routine.

The label area pointer and byte count
are increased by 80. The byte PRVLBL is
set °02°. If there is not space enough for
another label, PRVLBL is set to °08°.
Return is to read another statement
(STMTIN).

UPSI - CHART ER

Objective: To initialize the UPSI byte in
the communications region.

Entry: From the read statement routine
(STMTIN) when the programmer provides an
UPSI statement.

Method: The statement is logged if
required. The statement must contain an
operand specifying from 1-8 indicators.
The routine uses the UPSI section of the
SET routine to modify the UPSI byte with
the indicators. Return is to read another
statement (STMTIN).

TN

VOL - CHART ES

Objective: To build the name of a tape
file in the label area.

Entry: From the read statement routine
(STMTIN) when the programmer provides a VOL
statement.

Method: The VOL and TPLAB statements must
come in ordered pairs. The byte PRVLBL is
set at °02° initially and after each TPLAB
statement (unless there is no space remain-
ing in the label area). If PRVIBL is not
’02°, the VOL statement is out of sequence.
I1f there is no space remaining in the label
area, the job is canceled.

The statement is logged if required.
The VOL statement must contain two oper-
ands. The first must be a logical unit,
SYSXXX. The subroutine CKCVLU checks the
operand and sets UNCLOR:

UNCLOR - °00°' is system logical unit.
- '01° if programmer logical unit.
UNCLOR+1 - unit number.

The second operand must be a file name from
1-8 characters.

The next available 80-character label is
initialized in the label area:

blank in location 1.

file name in locations 2-9.

UNCLOR and UNCLOR+1 in locations 79-80.

The byte PRVLBL is given the value °01°
for the TPLAB routine. Return is to read
another statement (STMTIN).

JOB CONTROL FETCH (FETCHR) CHART EK

Objective: To clear storage and issue
fetch for a new problem program.
Entry: From EXEC.

Method: FETCHR is part of the EXEC routine
located at the end of Job Control in order
to set the limits for clearing storage.
Before the fetch of the new phase is given,
FETCHR:

o pMoves the labels (generated by VOL and
TPLAB statements) from the end of stor-
age to the end of the Supervisor.

o Calculates the clear-start-address from
the beginning of Job Control and the
length of the label area.

o Calculates the clear-end-address from
the end of storage and the length of
the clear routine and phase name.

o Clears storagé within the clear limits.

o Issues a fetch for the new phase.

JOB CONTROL SUBROUTINES - CHARTS FA-FG

ASGNLS - Chart FA

Given the address of a LUB in register
POINT1, ASGNLS lists all the assignments
(standard, temporary, alternate) associated
with the LUB for the LISTIO routine.

1. At ASGNLS, NOASGN, and NANJIB the pre-
sent assignment is listed.

2. At STDTST and NOJIB the standard
assignment is listed if the present
assignment is temporary.

3. At ALTTST any alternates to the present
assignment are listed.

Output is on SYSLOG if the command (LISTIO)

is given by the operator. Output is on

SYSLST if the command is given by the pro-

grammer .

BINCON - Chart FB

Scans for an operand of the form XX/YY/ZZ
in the input area. Checks that each
character-pair is numeric. Converts each
pair to a binary number, storing XX in
WRKRG1, YY in WRKRG2, and ZZ in WRKRG3.

BTLRTN ~ Chart FB

Compares an eight-byte arqument with a
table of eight-byte keys. When a match is
found, the two-byte function following the
matching key is added to the address ORIG-
IN. Exit is to the routine addressed by
the sum.

On entry to the routine, register POINT1
must contain the address of the table minus
10. Register POINTZ2 must contain the
address of the key. The argument must also
be the last key in the table to assure a
match.

CHKNUM - Chart FB

Checks for a numeric character-pair in the
input area. Packs the pair into a work
area WRKFLD. Advances the input area poin-
ter by three.

CKCVCU - chart FB

Checks for a device address X°CUU' in the

input area. Places '0CUU* in a four-byte

field CHUNT. Computes the address of the

PUB for this device:

1. Selects PUB pointer from the FOCL
field.

2. Multiplies pointer by 8 to get dis-
placement.

control Programs - Job Control 53

3. Adds displacement to PUBADD to get
address of the first PUB on the chan-
nel.

4. Searches PUB's on the channel for the
specified unit.

The PUB address is saved in STRPUB.

CKCVLU - Chart FB

Checks for a logical unit address 'SYSXXX'
in the input area. The logical unit name
is numeric for a programmer LUB (SYS003) or
non-numeric for a system LUB (SYSLST).

If the LUB is a programmer LUB, the LUB
number must be between 0 and the limit
specified by PGNICL. Bit 6 is set on in
LOGUNT. The number is stored in LOGUNT+1.
To compute the LUB address, CKCVLU:

1. Adds the LUB number to the LUB pointer
in PGFICL.

2. Multiplies the result by two to get the
displacement.

3. Adds displacement to LUBADD.

If the LUB is a system LUB, the name
must occur in the table TBRDR. Bit 5 is
set on in LOGUNT. From the table position
a LUB number and LUB displacement are
known. The number is stored in LOGUNT+1.
The displacement is added to LUBADD to get
the LUB address.

For either a a programmer or system LUB,
the LUB address is saved in STRLUB. UNCLOR
is initialized from LOGUNT and LOGUNT+1.
Figure 34 shows LOGUNT and UNCLOR.

'00' Flag LUB Number
LoGuNTL_ | I ! I
LUB
Flag Number
UNCLOR] | |
Figure 34. Work Areas LOGUNT and UNCLOR

CONCAT - Chart FC

Reads and logs a continuation card. Places
both parts of the statement in a single
buffer as in Figure 35.

First Card, Columns 1-71 Second Card, Columns 16-71

BUFFER |

Figure 35. Concatenation

54 IBM S/360 BOS System Control (16K Tape)

EXCPRG - Chart FC

Given a CCW address in register POINT1 and
a symbolic unit address in register O,
EXCPRG initializes the Job Control CCB and
issues an EXCP and a WAIT (if necessary).
If a unit exception (not EOF) occurs and
the unit is not SYSLOG or SYSLST, a message
with the device address is issued (on SYS-
1OG for the operator, on SYSLST for the
programmer). If the unit is SYSLOG, the
I/0 is reissued. If the unit is SYSLST,
the unit exception is processed in STMTIN
just before the next statement is read.

GETJIB - Chart FC

Given a LUB displacement (or address) in
register POINT1, GETJIB computes a JIB
address in register POINT2. Condition code
3 on return indicates that there was no JIB
pointer in the LUB.

GETPUB - Chart FC

Given a LUB displacement (or address) in
register POINT1, GETPUB computes a PUB
address in register POINT3. Condition code
3 on return indicates there was a null
PUB-pointer in the LUB.

JIBDCU - Chart FD

Given a LUB displacement (or address) in
register POINT1, JIBDCU determines if there
are any JIB's attached to the LUB. If
there are, it releases the JIB chain.
Furthermore, if JIBDCU is entered because a
standard assignment is being made, and if
the present assignment is temporary, JIBDCU
must be executed twice: first to release
any JIB's from the stored standard assign-
ment; second to release any JIB's from the
temporary assignment.

A JIB chain is released by:

1. Replacing each JIB flag in the chain
with zeros.

2. Chaining the free list to this JIB
chain by inserting the FAVP pointer
into the chain field of the last JIB in
the chain.

3. Adding this JIB chain to the free list
by inserting the JIB pointer from the
LUB into FAVP.

Finally, the standard LUB flag is restored

to the LUB replacing the JIB pointer.

LOGCHK - Chart FD

Sets bits 6 and 7 of JBCSW0 depending on
the assignments to SYSLST and SYSLOG.

LOGGER - Chart FE

Writes on S¥SLOG and, if programmer LOG
option is present, writes on SYSLST.

MOVERT - Chart FD

Given a from-address in register POINT1, a
to-address in POINT2, and a field length in
WRKRG1, MOVERT moves the field.

MSGOUT - Chart FD

Allows output on SYSLOG and SYSLST. Exe-
cutes subroutine SYSLGR.

OUTPUT - Chart FA

Allows output on SYSLOG and SYSLST. If
current command is from the operator,
writes on SYSLOG. If not, writes on
SYSLST.

PRPSY0 - Chart FE

Prepares SYS000 for input to Linkage Editor
by writing an ENTRY statement and position-
ing the tape for a read.

QLOGER - Chart FE

If the operator LOG option is present,
writes on SYSLOG. If the programmer LOG
option is present, writes on SYSLST.

RDSTMT -~ Chart FE

Sets switches in SYSLGR and SYSPTR to allow
output on SYSLOG and SYSLST. Reads from
SYSRDR if job control input bit 2 if off.
Reads from SYSLOG if bit is on.

RSTASG - Chart FF

Uses the RSTRTN to reset each of the LUB'’s
to its standard assignment.

RSTRTN - Chart FF

Given a LUB address in register POINT1,
RSTRTN determines if the present assignment
is standard. If so, the routine is com-
plete. If not, any JIB's are released from
the present assignment.

If the standard assignment is IGN ox UA,
LOGUNT is initialized and the ASSGN routine
is entered at MASGN (Chart EE) to complete
the reassignment.

If the standard assignment is a device,
the PUB pointer is restored to the LUB, and
the ASSGN routine is entered at RSTNTR
(Chart EE). On return, the LUB flag (or
JIB pointer) is restored to the LUB to
complete the reassignment.

SCAN - Chart FF

1. SCANR1l: Scans for a nonblank charac-
ter. If all characters are blank,
return is to the main routine.

2. SCANR2: Picks up the pointer and limit
from the previous scan. Scans for a
nonblank character. If all characters
are blank, return is to the main rou-
tine.

3. SCANR3: Picks up the pointer and limit
from the previous scan.

After entry, each scan is for a stop-
character: a comma, a blank, or an equal
sign. When one is found (or at the end of
the field if none are found), the condition
code is set by comparing to a comma. The
length of the parameter less one is saved
in PARLGT.

SIZCHK - Chart FF

Assures the parameter length is between one
and eight (0 < PARLGT < 7).

SYSILGR - Chart FG

If output on SYSLOG is suppressed, an
immediate return is taken to the main rou-
tine. If output is allowed, further
requests for output are suppressed. If
SYSLOG and SYSLST are the same, output is
on SYSLST (see subroutine SYSPTR).

Before writing on SYSLOG, the output
length is reduced by trailing blanks.
SYSLGR writes on SYSLOG.

SYSPTR - Chart FG

If output on SYSLST is suppressed, an
immediate return is taken to the main rou-
tine. If output is allowed, further
requests for output areas are suppressed.
SYSPTR writes on SYSLST, adjusting the line
count as necessary.

TIMLOG - Chart FG
If the timer feature is present, the output
buffer is cleared of everything but the

time field. Output is allowed on SYSLOG.
TIMLOG executes the subroutine SYSLGR.

Control Programs - Job Control 55

TIMSTP - Chart FG

Computes the actual time-of-day by sub-
tracting the timer (location 80) divided by
256 from the time-of-day (location 84).

The result is placed in the time field of
the output area in the form HH.MM.SS.

JOB CONTROL ERROR ROUTINES

CNIOAG = CONFLICTING I/O ASSIGNMENT
INDVTP - INVALID DEVICE TYPE

INIOAG ~ INVALID I/0O ASSIGNMENT
NOMRJB - NO FREE JIBS

NVSTMT - INVALID STATEMENT FORMAT
OUTSON - STATEMENT OUT OF SEQUENCE

56 IBM S/360 BOS System Control (16K Tape)

For each of these errors, the statement
in error is logged on SYSLST and SYSLOG if
required. Then the error message is writ-
ten on SYSLST and SYSLOG. The job coenhtrol
input bit 2 in JBCSW0O is set on to allow
input from SYSLOG. Return is to read
another statement (STMTIN).

IPTUNA -~ PLEASE ASSIGN SYSIPT
RDRUNA - PLEASE ASSIGN SYSRDR

For these errors in assignment, the
message is written on SYSLOG. The job
control input bit 2 in JBCSWO is set on to
allow input from SYSLOG. Return is to read
another statement (STMTIN).

INITIAL PROGRAM LOAD

IPL is a three-phase program. Figure 36
shows the relationship of the phases.
$SASIPL1 is a 24-byte phase consisting of 1
PSW and 2 CCW's. It is the bootstrap rou-
tine that is used to load $3AS$IPL2.

$SASIPL2 clears main storage beyond

IPLZ, notes the size of main storage, reads
the Supervisor into main storage, and moves
the SYSGEN I/O tables (the tables on
SYSRES) to high main storage. It builds an
I/0 table consisting of two devices, the
SYSRES tape and a communications device, to
be used in the operation of S$IPLRT2. It
issues a supervisor call to bring in
SIPLRT2 from the core image library.

SIPLRT2 calculates the size of main
storage and the number of PUB‘*s and TEB's
in use by the present system. Then it
executes the read subroutine. The read
subroutine (Chart GD) reads three types of
control statements that the operator may
put in the communications device. After a
statement is read it is identified by the
scan subroutine (Chart GE).

The ADD cards are processed by the ADD
statement subroutine (Chart GF). After a
PUB has been added, the program branches
back to read another card. The DELETE
cards are processed by the DELETE statement

subroutine (Chart GG). After a PUB has
been deleted, the program branches back to
read another card. The SET card is proc-
essed by the SET statement subroutine
(Chart GH), which sets the date and time of
day in the Supervisor. The program branch-
es back to restore the 1I/0 tables to the
Supervisor, load Job Control, and make
final exit. .

$$ASIPLL (BOOTSTRAP)

Objective: To load 3ASIPL2

Entry: By operator action

Method: To initiate system operation, the
operator sets the device address of SYSRES
on the console and presses the load key.
Hardware reads the first record from SYSRES
into location 0 and transfers control to
the CCW at location 8 (Figure 37).

In the 16K tape system, this CCW reads
the next record on SYSRES, $$AS$IPL2, into
an area of storage that is higher than the
end of the largest possible Supervisor.
When the I/0 is complete, hardware uses the
PSW at location 0 as the new PSW. In this
system the PSW transfers control to the
beginning of $3A$IPL2 (Figure 38).

control Programs - Initial Program Load 57

SSASIPL]
Bootstrap

GA

SSASIPL2 GA-GH

Load Supervisor
Save SYSGEN
1/O Tables

SPLRT2 GC

Read and
Process IPL
Statements

(Job Control)

Figure 36.

58 IBM S/360 BOS System Control (16K Tape)

ADDRTN

GF

Add a
PUB

First Statement
- - Required

GD

Read
Statement

OPRTN GE
Determine
Operand

Statement
Type

SETRTN GH

Set Date
and Time

Last Statement
Processed

IPL Program Flow

DELRTN

GG

Delete
a PUB

Console Address Load Key
-
~
-
_ -~
SYSRES -
~
~
$SASIPLI Reads First Record Transfers Control
N Into Location 0 to Location 8
N
N
$SASIPL2 N
0 8
PSW CCW 00....00
$$ASSUP
Core [])
Image J
Library - j
/ / L ~
~ -~
/ $IPLRT2 /

Figure 37. IPL Hardware Load

Control Programs - Initial Program Load

59

SYSRES

Reads Second
Record on SYSRES

PSW] ccw | 00cc.ceens 00
Transfers Reserved for
Control to Supervisor
Beginning
of Program

L
—

$$ASIPL2

| \ $SASIPLI \
\ $SASIPL2 \\4—
\\
Y $SASSUP \ |
L \ \
| 1
\
\
\
r \
\
\
\
\
Core \\
Image \\
Library N
\
\
\
\
\
\
\
/ $IPLRT2 / \
& |
Figure 38. $$ASIPL1

SAIPL2 (LOAD) CHARTS GA AND GB

Objective: To load Supervisor and to pre-
pare tables for SYSRES and a communication
device.

Method: This routine clears storage from
the end of this routine to the end of stor-
age. It reads the next record (or records)
into the Supervisor area from SYSRES. The
address of SYSRES is still available from
$$A$IPL1. The number of records in the
Supervisor is specified in the Supervisor
header.

If there are any read errors during the
reading of the Supervisor, error codes are
put in locations 0-3. The tape is rewound
and the program enters a wait. The job
must be restarted.

At ENDRD control is given to LUBRTN
(Chart GB) to build a PUB for SYSRES in low
storage. The first time through LUBRTN,
the PUB, TEB, and LUB tables generated with
the system are saved in high storage.

LUBRTN then builds the PUB, zeros the
TEB if present, updates the FOCL and the
PUB pointers in the LUB's, and assigns the
PUB to the LUB for SYSRES.

60 IBM S/360 BOS System Control (16K Tape)

On return from LUBRTN the program enters
the wait state awaiting operator action.
The operator takes one of the following
actions to determine the IPL communications
device:

¢ Presses the external interrupt key
causing an external interrupt. SYSRDR
is to be the communications unit and it
is already assigned a device. The
device address is located in the PUB
table and placed in the I/0 old PSW.
Presses ready on a disabled reader
causing an I/0 device end interrupt.
SYSRDR is to be the communications
unit.
Presses the 1052 request key causing an
I/0 attention interrupt. SYSLOG is to
be the communications unit.

Again control goes to LUBRTN to build a
PUB in low storage. The device address is
taken from the I/0 old PSW. The PUB is
assigned to the LUB for SYSRDR or SYSLOG,
depending on the type of interrupt.

The two-device I/0 table is sufficient
to complete the IPL process. If the stor-
age protection feature is specified in the
configuration byte (displacement 52) of the
communications region, a key of 0 is given
to the Supervisor area. The rest of stor-
age is given a key of 1.

\ $SASIPLI \
\ $$ASIPL2 \
\ $$ASSUP Wt\
| ‘\\\\\\
AN
\ Loads
. Supervisor
\ S
\ e
\ S
\\ \
AN
Core \\
Image \
Library \\
\
\
\
\
N
\ A
L $IPLRT2 /=:: ___________ R
T~~< Loads o
$IPLRT2 < _ -
\\‘\
* Below $$ASIPL2 if
L Core Size is 16K,
Figure 39. $$AS$IPL2

Finally, S$IPLRT2 is loaded by an SVC of
4. Figure 39 shows the layout of main
storage at the end of $$A$IPL2. Control is
given to $IPLRT2. ’

$IPLRT2 - CHART GC

Objective: To generate I/0 tables and to
transfer control to Job control.

Entry: From $S5ASIPL2.

Method: S$IPLRT2 is the main routine con-

trolling the generation of new I/0 tables.
After initializing, it calls the read and

scan routines (Charts GD and GE), which in
turn call the ADD, DELETE and SET routines
(Charts GF, GG, GH).

After a SET statement is processed, this
routine expects no further input on the
communications device. It must resolve the
I/0 assignments in high and low storage and
restore the updated high storage 1I/0 tables
to low storage.

First the communications device is
resolved. The logical unit for the com-
munications device is SYSRDR or SYSLOG.

$$ASSUP

Saves
Generated

1/O Tables

)
1
(

$SASIPL2

—

Transfers Control

/

$IPLRT2

SYSGEN 1/O Tables *

The routine checks whether the communi-
cations LUB in high storage is assigned to
some PUB. If it is, and no other LUB has
the same PUB-pointer, the Job Control flags
in the associated PUB are cleared.

In any case, the PUB is located. There
must be a PUB in high storage for this
device. The device type in the PUB is
checked to determine if it is the same as
was used by IPL. The PUB is then perman-
ently assigned to the LUB for SYSRDR or
SYSILCG.

The process is repeated for SYSRES. The
I/0 tables are then complete except for
possible reordering of the PUB and LUB
table necessary for operating with a multi-
plex channel. The LUB's for SYSRDR,
SYSLST, SYSLOG, and SYSIPT are unassigned
if they are assigned to tapes. Job Control
must make these tape assignments to open
the files properly.

Finally, the I/0 tables are moved to
their normal position in low storage. If
the communication device is a 1052, an exit
message is written. All registers except 1
and 2 are set at zero. A program to load
Job Control is moved into the transient
area and given control.

control Programs - Initial Program Load 61

READ SUBROUTINE (READRT) CHART GD

Objective: To read a statement from the
communication device.

Entry: From $IPLRT2 when a control state-
ment is required.

Method: A check is made to see if the
communication device is a 1052 or a card
reader. If it is a 1052, a test is made at
LOGSTR to see if it is the first statement.
1f so, a message is written by MSGRTN: GIVE
IPL CONTROL STATEMENTS. The CCW is then
set to read, and the program branches to
IOHLD.

If it was not the first statement, the
buffer is blanked at LOGRED and the program
branches to IOHLD.

At IOHLD the CCB address is saved in
case a read error occurs. A supervisor
call is issued to read a card from the
communication device. The device can be
assigned to SYSRDR or SYSLOG. After read-
ing, a test is made for any 1/0 errors. If
there was an error, SYSRES is rewound, if
possible, and a wait is entered with the
error code in storage location 0-3. The
job must be restarted.

1f there were no errors, the program
returns to SIPLRT2 at REDRET, and the
statement is ready to be evaluated.

SCAN SUBROUTINE (OPRTN) CHART GE

Objective: To scan the statement and
determine if it is an ADD, DELETE, or SET
statement.

Entry: From $IPLRT2 after a statement has
been read.

Method: The statement is translated into
internal machine codes for evaluation. A
search is made for the first position of
the op-code. At TRTBRC the op-code is
tested to determine if the first character
is a legal character. The function code of
this translate-and-test instruction plus
the location counter is used to control the
next instruction. If the function code is
4, an error branch is performed. If the
code is 8, the character is legal and a
branch to TABRET is performed.

The beginning address of the op-code is
stored, and a translate-and-test for the
end of the op-code is done. At TRTBRC the
delimiter character is tested for a blank.
If it is not blank, an error branch occurs.
If the delimiter character is a blank, the

62 IBM S/360 BOS System Control (16K Tape)

length of the op-code is calculated. The
operation table field is initialized by
MVCOP, and the op-code is moved into the
end of the operation table.

After the length of the card is found,
TRTFFD gets the first operand. It is test-
ed for legality. After the address of the
first operand is stored in FLDST, the reg-
isters are initialized to set up to search
for the type of card being processed.

A search increment factor is set in
register 4 at CDSCH to step through the
table looking for the operation (op-code).
A compare is made after each increment to
see if the type of statement equals the
factor in the table. When it does, the
branch address is picked up from the factor
table and a branch is made to the subrou-
tine that will handle the statement. This
subroutine will be the one specified in the
card: ADD, DELETE, or SET.

ADD STATEMENT SUBROUTINE (ADDRTN) CHART GF

Objective: To add a device to the PUB
table in high storage.

Entry: From the scan routine when an ADD
statement is identified.

Method: A check is made at the start of
the ADD routine to determine if there is
space in the PUB table for one more device.
If not, a message, CANNOT ADD PUB-
INSUFFICIENT TABLE SPACE, is written. If
there is space, FDSRTN gets the first
operand.

If the device address operand includes a
key, the operand registers are stored for
later evaluation. The channel and unit
numbers are checked and converted to hexa-
decimal by HEXRTN.

The PUB table is scanned to see if the
PUB to be added already exists. If it is
in the table, a message prints out PUB
ALREADY EXISTS. If not, FDSRTN brings in
the second operand, the device type speci-
fication. FNDTYP scans for the correspond-
ing device type byte and stores it in the
temporary PUB. It also initializes the TEB
area if there is a TEB associated with this
device.

The statement is tested to determine if
there is another operand specifying device
options. If so, it is brought in by
FDSRTN. The options are converted to hexa-
decimal by HEXRTN, and stored in the PUB.

The key registers are picked up at
KEYCHK and tested to see if there is a key

s

field to establish. 1If there is not a key

to establish, control goes to PUBMKE. This
key is either a switchable device indicator
or a priority-on-channel indicator.

If the key indicates a switchable
device, the following values are set:
s Switchable device bit in the PUB chan-
nel scheduler flag
¢ Minimum priority key for the low-order
channel
o Branch address for the build PUB rou-
tine.
If it is not a switchable device, the
priority key is converted to decimal and,
at PUBMKE, the branch address for the build
PUB routine is set.

PUBMK1 sets the PUB table address for
the build PUB routine.

BLDPUB builds the PUB for the device the
operator has specified on the ADD card.
After the PUB is built, CHURTN is used to
update the FOCL. LUURTN updates the LUB
table. This completes all the necessary
updating of the I/0 tables for the device
that was added. The program returns to the
main line at OPRET.

DELETE STATEMENT SUBROUTINE (DELRTN)
CHART GG

Objective: To delete a device from the PUB
table in high storage.

Entry: From the scan routine when a delete
statement is identified.

Method: FSDRTN gets the first operand of
the statement to be evaluated. It is
checked for correct length and legal chan-
nel address. After the channel number and
the corresponding FOCL entry are deter-
mined, the channel is tested to assure -
there is information on it.

The PUB's for the specified channel are
searched for the specified device. When
the device to be deleted is found, its
address is saved.

‘When the PUB's have been searched, the
program goes to SCNEND. There a check is
- made to make certain that the device to be
deleted was found. If there is a TEB asso-
ciated with the PUB, it is deleted by
DEBLOP and the program goes to PUBDEQ. If
there is no TEB for the PUB, control goes
directly to PUBDEQ.

At PUBDEQ the address and the length of
the portion of the PUB table following the
PUB to be deleted are set up. Then SYSMVC
deletes the PUB by moving that portion of
the table down 8 bytes.

After the PUB is deleted, the FOCL bytes
and the PUB-pointers in the LUB table must
be updated.

Oon completion, control returns to
$IPLRT2 at OPRET to read another card.

SET STATEMENT SUBROUTINE (SETRTN) CHART GH

Objective: To set the system date and time
of day.
Entry: From the scan routine when a set

statement is identified.

Method: After all the ADD and DELETE
statements have been read, a SET statement
must be read to set the time of day and the
date.

There are two formats for the date. The
American format is month followed by day.
The European format is day followed by
month. The date configuration byte, dis-
placement 53 in the communications region,
specifies the form used by the system.

The first operand of the card is brought
in by FDSRTN and tested to see if it is the
date field. If it is the date field, the
system date is set in the Supervisor by
DATERT.

A test is made to see if a timer is
present. If not present, return is to
$IPLRT2. If a timer is present, the next
operand is brought in by FDSRTN and tested
to see if it is the clock field. 1If it is
not the clock field, it is in error. 1If it
is the clock field, the hour, minute, and
second of the day are set in time-of-day
(location 84) by TIMERT. The program
returns to $IPLRT2.

If the first operand is not the date
field, it is tested to see if it is the
time field. If it is not the time field,
it is in error. If it is the time field,
the hour, minute, and second of the day are
set in time-of-day (location 84) by TIMERT.
The next operand is brought in by FDSRTN
and tested to see if it is the date field.
If it is not, it is in error. If it is the
date field, the system date is set in the
Supervisor by DATERT and the program
returns to $IPLRT2.

SUBROUTINES FOR $$AS$IPL2 AND $IPLRT2

BLDPUB: Given the channel and desired
position, inserts a PUB entry in the
PUB table.

Control Programs - Initial Program Load 63

LUURTN: Given the PUB number of an insert-
ed or deleted PUB entry, modifies PUB
pointers in the LUB table as required.

CHURTN: Given the channel for which a PUB
entry has been inserted or deleted,
updates the FOCL.

SYSMVC: Given the length of a field, its
location, and where it is to be moved,
moves the field.

SUBROUTINES FOR $IPLRT2

COMCHK: Checks a device against a list of
allowable devices. Error return if no
entry found.

PBFRTN: Given a low-storage PUB entry,
locates the high-storage PUB entry for
the device. Error return if no entry

found.

DBIRTN: Compares LUB's to determine if
more than one LUB points to a particu-
lar PUB.

MPXRTN: Assures that the PUB table is

correctly ordered and the LUB table
modified for bursting on a multiplex

channel.
OPNRTN: Unassigns any system I/O units

(SYSRDR, SYSIPT, SYSPCH, SYSLST) that
have z SYSGEN assignment to a tape
unit.

64 IBM S/360 BOS System Control {16K Tape)

ASNRTN: Assures that the PUB job control
flag is correct for each assignment
made at system generation time.

FDSRTN: Locates the next operand in the
input area.

FNDTYP: Analyzes device type specified in
an ADD statement to pick up tabled
information.

DECRTN: Converts a field from decimal to
binary.

HEXRTN: Converts a field from hexadecimal
to binary.

DATERT and TIMERT: Update communications
region date field and time.

ERROR HALTS FOR $IPLRT2

ILICD, COMNFD, RESNFD, TEBEXD, PUBEXD,
DBLADD, DELEXT, RESERR: Issues message.
If communications device is SYSLOG,
attempts to read another statement. Other-
wise rewinds SYSRES and generates a wait,
with error code in low storage.

PRCERR: If communications device is
SYSLOG, issues message. If communications
device is SYSRDR, rewinds, generates a
wait, and puts error code in low storage.

IOHALT: Rewinds unless error is on
SYSRES. Generates a wait.

LINKAGE EDITOR

The Linkage Editor prepares programs for
execution on 16K Tape BOS. The Linkage
Editor accepts as input the relocatable
object modules produced by the language
translators. It processes these modules
into program phases, which may be immedi-
ately executed or cataloged into the core
image library.

Linkage Editor control cards direct the
program to read input module(s) and form
phases from the control sections within the
modules. Figure 40 shows how phases can be
formed. Linkage Editor relocates the orig-
in of each control section in the phase,
assigns each phase an area of main storage
and a transfer address, and modifies the
contents of the address constants in the
phase.

Language Translator Output Linkage Editor Output
Module A
ESD's Phase 1
- cstera [csecia
TXT - CSECTB | CSECTB
1T - csecic |
RLD's \\\\\\
Phase 2
Module B CSECTC
ESD's ’///// CSECTD
TXT - CSECTD ////// CSECTE
TXT - CSECTE
TXT - CSECTF Phase 3
TXT - CSECTG % CSECTG
RLD's
Figure 40. Module-Phase Relationship

SERVICE PROGRAMS

The relocation factor for each control
section is determined and saved by building
a table called the contxol dictionary.

This table contains the Linkage Editor
phase definitions and the module ESD items.
When complete, it provides sufficient
information for determining the location of
each control section and for resolving any
references between control sections.

The module TXT items are then built into
phase blocks. The RID items (address
constants) are modified and inserted into
the text. A transfer address is determined
for each phase.

LANGUAGE TRANSLATOR MODULES

The input to Linkage Editor consists of
object modules and Linkage Editor control
cards. Each module is the output of a
complete language translator run. It con-
sists of dictionaries and text for one or
more control sections.

The dictionaries contain the information
necessary for the Linkage Editor to resolve
references between different modules. The
text consists of the actuval instructions
and data fields of the module.

Five card types (described in Appendix
E) are produced by the language translators
or the programmer to form a module. They
appear in the following order.

r T 1
|Card Type |Definition]
L 4 4
v T 1
| ESD |External Symbol Dictionary |
F ¢ {
| TXT | Text |
¢ t 3
|RLD |Relocation List Dictionary |
L 4]
§ T |
|REP |Replacement to text made by |
| | the programmer |
= + !
| END 1End of module |
L L j]

The External Symbol Dictionary contains
control section definitions and inter-
module references. When the Linkage Editor
has the ESD's from all modules, it can
relocate the sections and resolve the
references. Five types of entries are
defined in the control dictionary.

Service Programs - Linkage Editor 65

o]

b]
SD Type|Definition
i

e e od

v

|Section Definition; provides
|control section name, assembled
Jorigin, and length

i

[0)]
o

lavd
(]

T

|Private Code; provides assembled
|origin and length for an unnamed
|control section

4

P y—

&

1

|Label Definition; specifies the
|assembled address and the asso-
|ciated SD of a label which may
|be referred to by another module
4

+
|External Reference; specifies
|the location of a reference made
|to another module

i

]
i)

1|

|Common; indicates the amount of
|main storage to be reserved for
|common use by different phases
L

R paap——
2}
=

b e e et it s e s i e . e e B

The Relocation List Dictionary identi-
fies portions of text that must be modified
on relocation (address constants).

When Linkage Editor reads a module, it
stores ESD's in its control dictionary,
writes TXT and REP items on a TXT file, and
writes RLD items on an RLD file. Each
item, identified by the language transla-
tors with an ESID number, is identified by
the Linkage Editor with a control diction-
ary number to avoid duplication of iden-
tification between modules.

LINKAGE EDITOR PROGRAM FLOW (FIGURE 41)

Linkage Editor is logically divided into
four passes. Pass 1 reads the input,
builds the control dictionary, checks for
errors, and writes the TXT and RLD files.
Pass 2 reads the TXT file and builds core
image blocks. Pass 3 reads the RLD file,
modifies the address constants, and merges
them into the core image blocks. Pass 4
handles abort errors and assures that the
Linkage Editor output is on SYS000.

Pass 1 actually consists of three phases:
o Overhead Processer
e Control Card Processor
s 12-2-9 (Module) Card Processor.

Job Control brings in the first phase
when it gets Linkage Editor. The initiali-
zation section of this phase determines the
end of the problem program area.

1. If 16K, the two card processors share
the same area in storage. The Overhead

66 IBM S/360 BOS System Control (16K Tape)

Processor determines the input type and
assures that the correct phase is pre-
sent.

2. If greater than 16K, all three phases
can be in storage at the same time.

The Overhead Processor reads Linkage
Editor input and provides a logical record
to the correct card processor. This phase
contains the routines for the Linkage Edi-
tor control cards ACTION and INCLUDE.

ACTION must precede all other input
and is grouped, therefore, with the
initialization routines. It sets
option bits in the Linkage Editor com-
manications region.

INCLUDE determines the location of
Linkage Editor input and is grouped,
therefore, with the input routines.

This phase also contains subroutines common
to the card processors.

The 12-2-9 Processor handles the input
module cards.

ESD items are placed into the link-
age table with a control dictionary
number. Each item is entered into the
control dictionary. For each ESD item
of type SD or PC, a relocation factor
is calculated. For each item of type
ID or ER, an attempt is made to resolve
the item into an LR.

TXT items are assigned control dic-
tionary numbers corresponding to their
ESID numbers and written on the TXT
file (5¥S001).

RLD items are assigned control dic-
tionary numbers corresponding to their
ESID numbers and written on the RLD
file (S¥S002).

REP items are converted to binary
and treated like TXT items.

END items signal the end of a
module. The linkage table is destroy-
ed. The transfer address from the
first END in a phase is saved in the
Linkage Editor communications region.

The Control Card Processor handles the
PHASE and ENTRY Linkage Editor control
cards.

PHASE card processing constructs an
entry in the control dictionary and
writes a phase record on the RLD file.
If not the first phase card, the rou-
tine writes a transfer record on the
TXT file for the previous phase and
performs AUTOLINK.

ENTRY card processing writes a
transfer record on the TXT file for the
last phase and performs AUTOLINK. It
adjusts all the relocation factors by
the length of common and, if a transfer
address is given in the card, stores an
overriding transfer address into the
Linkage Editor communications region.

PN

—

Linkage Editor
Pass 1

INTFIL

[A

Initialization

@7

} Phase 1
of Pass 1

Pass 1
Control Card
Processor

Phase 2 of
Pass 1
12-2-9

GETcD [Jc
Get Record
Assure Correct
Processor
ACTRTN —|7JN
Action Card YES Set for
Options 6
CTLRTN JH INCRTN JK
YES . " Determine "\ INCLUDE .
Control Card Initialize for Determine
Control Card Card Type Source of
Processing Input
~
PHASE I ENTRY
PHSRTN | LA ENRRIN | LH
2‘0 :l';:s:z YES Begin New End of
ard Ye Phase Program Phases L Phase 3 of
Determine
2
Card Type (Pass j)
[Teso ™I [rip | eno | rep
ESDRTN | KA TXTRTN KJ RLDRTN | KK ENDRTN | KM REPRTN | KN
Enter ESDs Build TXT Build RLD Save Tr.ansfer Convert To
Into Control . . Reset Linkage
e File File TXT
Dictionary Table A

Figure 41. Linkage Editor Program Flow (Part 1 of 2)

Service Programs - Linkage Editor

Processor

67

Pass2)

Map
Requested

NO

‘ Pass 3

PRTMAP [me

INITIAL NA

YES

Write Map
on SYSLST

Initialization

]

CMPDCT MA

Compress
Control
Dictionary

START [me

Read TXT
Write Core
Image Blocks

XFR MD

Determine
Phase Transfer
Address

Pass 3

Figure 41.

68 IBM S/360 BOS System Control (16K Tape)

@_

@_‘

RLDRD [Nne

Read RLD
File

End of
RLD File

ENDPH NN

Get Phase
2 of Pass 3

START PA

Initialization

RDTXT [e8

Read TXT
File

End of
TXT File

NO

START QA

Output on
SYS000

PHRCD [~D

Build New
Phase Header

"@ ‘ Job Control)

RLDFMT [NG

Compress
and Modify
RLDS

=

RLDTST | PD

Merge RLDS
into TXT

Linkage Editor Program Flow (Part 2 of 2)

TN

Pass 2 is a single_phase TXT processor.
It writes a MAP on SYSLST, if requested,
and compresses the control dictionary to
half its Pass-1 size. It reads the TXT
file (SYs001) and forms core image blocks,
phase by phase, using the control diction-
ary to fix storage locations. The blocks
are written on SYS002. Should a backward
origin occur, an alternate unit (SYS000) is
used to rewrite the blocks. At the end of
the pass, output may be on either file.

Pass 3 is a two-phase RLD processor.
The first phase determines if all the RLD's
can be processed in storage or if they must
be processed phase by phase. The routine
reads the RLD file (SYS002) and modifies
both the addresses and the text of the
address constants from the control diction-
ary. If processing phase by phase, the
modified and compressed RLD’s are written
on SYS001.

The second phase in Pass 3 reads core
image blocks from SYS002 or SYS000, merges
in the modified RID’s, and writes the com-
pleted phase on the alternate unit, SYS000
or S¥S002, along with a phase header.

Pass 4 writes any warning messages and
cancels the job if a serious error has
occurred. assures that the final output is
on SYS000 and calls in Job Control.

LINKAGE EDITOR CORE ALLOCATION (FIGURE 42)

Initially, Job Control brings the first
phase of Linkage Editor into main storage.
The first phase defines the Linkage Editor
communications region, the Overhead Pro-
cessor, the input area, and the initializa-
tion routines.

The initialization routines determine,
from the size of main storage, how to allo-
cate space to the TXT and RLD buffers and
£he linkage table and control dictionary
area. They also determine if both of the
remaining phases of Pass 1 fit into main
storage at the same time. If this is a
minimum system, these two phases must share
main storage.

Entries to the control dictionary are
made from high-to-low storage. Each entry
is sixteen bytes long.

Supervisor and
Transient Area
Linkage Editor Communications Region
T
Pass 1 Pass 2 Pass 3 Pass 4
Overhead Processor
Input Area Coreload 1 | Coreload 2
i
Initialization 12-2-9 | Control Card
Processor | Processor 1/O Area
1
Overlu))fs only in 16K Processed
RLD's RLD's
TXT Buffer
RLD Buffer Input
t Beginning of
Linkage Table
$ End of Control
Dictionary after Output
Pass 1 Core
Image
Beginning of Compressed Control Blocks
Control Dictionary* Dictionary
Figure 42. Linkage Editor Core Allocation

Service Programs - Linkage Editor 69

PHASE entry 0-7: phase name

o

type = *07°'

9-11: phase origin

12: --

13-15: phase end

ESD entry 0-7: label

[s<]
.

type = *01*' for LD,
'02* for ER, '03' for
LR, '04* for PC, and
'05°* for CM

assembled origin

12: phase number

control section length
for Ssp, PC, or CM;
control dictionary
number of section
definition entry for
LD or LR; blanks for
ER.

e e e e e e ey e e s B e e e e S o i e o e e e S e g e o]
s U WO WP UUI Wy SN SN G VN Sap—

[P e e, G o v o chm S — o, S s, W e S S s o QU S S —— A— — —— o— T—— S—

Entries to the linkage table are made
from low-to-high storage. The entries are
ordered by ESD identification number by
module. Each entry is three bytes long.

13
| Linkage 0-1:
{Editox

|
L

control dictionary
number

2: ESD type

o e o e e o
SRR VN

PHASE entry

ESD type = *07°

1-3: phase transfer address

4-5: number of blocks in

phase

6~7: number of characters in

last block

ESD entry : ESD type

1-3: assembled origin

4: phase number

5-7: relocation factor for
sD, PC, or CM; control
dictionary number of
section definition
entry for LD or LR;

blanks for ER.

o o o o e e s St o e S S e G WD S S S Tt S s S, S
e e e s G e S B s St e, B e e, e e B it s W S B . o]

USRS SUpSS i SSRSEEEE R R SN O SO,

70 IBM S/360 BOS System Control (16K Tape)

Pass 2 compresses the control diction-
ary by eliminating the first eight bytes
of each entry (as shown in the preceding
chart).

LINKAGE EDITOR I/0 FLOW (FIGURE 43)

Pass 1 reads the input (Linkage Editor
control cards and language translator
modules). Input is expected on S¥YS000,
a Linkage Editor INCLUDE card may direct
the program to get a module from the relo-
catable library on SYSRES or SYSRLB.
Appendix E shows the format of the input
module cards.

but

Pass 1 writes text and transfer records
on SYS001. The text records are unchanged
from the text input except that the ESD
identification number (ESID number) is
converted to a control dictionary number.
Pass 1 writes phase and RLD records on

SYS002. The phase record is 20 bytes long:
0-1: phase number assigned by Linkage
Editor
2-9: phase name

10: ESD type = '07°'
11-13: phase origin
14-20: Reserved to eliminate noise
record.

o~

Control Cards

i TXT and
Modules v |~ Transfers
SYSRES _————— Pass 1 Phase and RLD's
or Include Modules NG
Errors
SYSRLB SYSLST
SYSLOG
MAP SYSLST
/
IXT Pass 2
C
Image Y/SYS002 o
Blocks Alternately
SYS000
Compressed
RLD's if all
RLD's Pass 3 will not fit Pass 3
Coreload 1 in Core Coreload 2 Completed
‘ Phase
Core Image
SYS002 Blocks SYZ?OO
55000 SYS002
SYSLST
SYSLOG
Pass 4

Phase

Completed

Copy if Phase
Pass 3 wrote
phase on
SYS002
Figure 43. Linkage Editor I/0 Flow

Completed

SYS000

Service Programs - Linkage Editor

71

The RLD records are unchanged from the
text input except that the ESID numbers are
converted to control dictionary numbers.
Four bytes precede the blocked RLD records,
indicating number of records per block and
number of bytes per record.

Pass 2 writes a Linkage Editor MAP if
requested. Pass 2 reads the text records
from SYS001 and writes core image blocks on
SYS002 or SYs000. Each block is identified
by a phase number. Pass 2 defines the
phase transfer address.

Pass 3 reads the RLD records from SYS002
and compresses them. If they cannot all be
processed in main storage at one time, the
compressed RLD's are written on S¥S001,
phase by phase. The second part of Pass 3
then reads RLD’s from SYS001 to merge with
text from SYS002 or SYS000.

Pass 3 writes the completed phase on the
third tape (SYS000 or SYS002) as it appears
in the core image library. A 61-byte
header/trailer record precedes the phase:

0: "c"
1-30: phase header
31-60: trailer; header of the previous

phase; zeros for the first phase.
The phase header contains:

0-7: phase name
8-11: phase origin
12-15: phase end
16-19: transfer address
20-23: end of longest phase
24-25: Dbytes per block
26-27: number of blocks
28-29: number of bytes in last block.

The core image records are written in 4K
blocks for a 16K system or on an MINSYS
option, 12K blocks for 32K, or 32K blocks
tor 64K.

PASS 1-CORELOAD 1

I/0 INITIALIZATION (INTFIL) CHART JA

Objectives:

1. Determine the location of the relocat-
able library and initialize to use it.

2. Open tape files used by the Linkage
Editor.

3. Rewind work tapes.

4. Initialize print control flags.

Entry: From a fetch of the Linkage Editor
program by Job Control.

Method: This routine resets the error
register and uses the facilities of the
Supervisor to rewind tapes SYS001 and
8YS002. It determines if a private

72 IBM S/360 BOS System Control (16K Tape)

- ary, if necessary.

relocatable library (SYSRLB) is assigned.

If it is assigned, this routine:

1. Turns on the RLB flag.

2. Turns on the rewind SYSRLB switch.

3., Overlays the contents of location
LIBLUB with SYSRLB.

4. Rewinds SYSRIB.

The routine next opens tape files SYS001
and SYS002 and performs these steps:
1. Turns on the appropriate print control
flag if SYSLOG equals SYSLST.
2. Turns on the log print flag if SYSLOG
is a printer.
3. Branches to initialize main storage
(Chart JB) if SYSLST is not assigned.
4. Sets the line count if necessary.
5. Determines device type.
a. Exits to initialize main storage
(Chart JB) if the device is a tape.
b. Turns off the ASA flag and the print
control available flags before
branching to initialize main stoxr-
age, if the device is a printer.

Note: If the relocatable library is not

a private library, it is located on SYSRES
fcllowing the core image library.

STORAGE INITIALIZATION (INTCRE) CHART JB

Objectives:

1. Determine the end-of-supervisor
address.

2. Align addresses on appropriate boundar-
ies.

3. Determine the storage loads required by
Pass 1.

4. Establish optimum sizes for TXT and RLD
records, RLD buffer, and core image
blocks.

5. Initialize linkage editor communi-
cations region with information about
buf fer dimensions.

6. Clear main storage used by linkage
table and control dictionary.

Entry: From the I/0 initialization rou-
tine, Chart JA.

Method: Using the supervisor communi-
cations region, this routine computes the
address of the first usable byte. This is
either the address of the end of the prob-
lem program label area plus one byte dou-
bleword aligned, or the address of the
beginning of the problem program area,
whichever is greater.

The routine branches to a subroutine to
align this address on a doubleword bound-
It saves the aligned
address for use in the first phase origin
of the program to be linkage-edited, or for
use in processing common areas.

./ \\

The routine next initializes these loca-
tions in the linkage editor communications
region:

1. CTLDAD with the address of the last
entry made in the control dictionary
(initially CDENT1+16).

2. CDENT1 with the address of the first
control dictionary entry. The control
dictionary is built from high- to low-
storage. The first entry is located at
the end of the problem program area.

The routine determines if minimum main
storage is available by comparing the
end-of-pass-3 address with the end-of-
problem program address. If the
end-of-pass-3 address is higher than the
end-of-problem program address, it
indicates less than minimum storage is
available. In this case, the routine
branches to location TRYLE to set up for a
16K configuration, and follows with a
branch to location INIT1. If Pass 3 fits,
the routine uses a table look-up technique
to determine machine size, and the size of
the tables and buffers associated with the
machine configuration found.

At location INIT1, the routine initiali-
zes linkage editor communication region
locations:

1. CIBLOC with a value equal to half the
size of output core image blocks.

2. RLDSIZ with size of RLD input records
to Pass 3.

It next tests for 16K machine configu-

ration, and if found, branches to location

INIT2 to split Pass 1 into three separate

coreloads. If this is not a 16K configu-

ration or if Pass 1 has been split into

three coreloads, the routine continues at

location INITY4.

Starting at INITY4 the routine initiali-
zes these locations:
1. TBFAD with the test buffer starting
address. '
2. WRTXT (CCW).
3. TBFEND with the text buffer ending
address. .
4. RBFAD with the RLD buffer starting
address.
5. PHRLD (CCW).
6. RBFEND with the RLD buffer ending
address.
It locates the starting address of the
linkage table, determines the main storage
available for the control dictionary, and
executes a clear of the last 512 bytes of
main storage. {(Job Control clears remain-
ing area prior to fetching Linkage Editor.)
The area between the starting address of
the linkage table and the end of the con-
trol dictionary is thus zeroed.

The routine resets the first four bytes
of both the TXT buffer and the RLD buffer
and performs these steps:

1. Branches to location GETCD if Pass 1 is
more than one coreload.

2. Moves the load routine (LODORG, Chart
JD) into the TXT buffer for use in the
processor fetch routines.

3. Tests for a minimum size core image
block request (MINSYS option given to
job control).

a. Branches to GETCD if no request has
been made.

b. Sets up location CIBLOC in the
linkage editor communications
region for minimum size output
blocks (4K) before branching to
GETCD, if the request has been
made.

GET CARD PROCESSOR (GETCD) CHART JC

Objective: Determine and verify card oper-
ation, and call appropriate fetch and pro-
cessor routines.

Entry:

1. 1Initially from the initialize core
storage routine, Chart JB.

2. Thereafter from any of the card pro-
cessor routines.

Method: Because this routine has multiple

entries, it is tailored to fit different
situations, which are discussed separately.

Initial Entry

The dummy phase card generated flag has
been turned off by the main storage ini-
tialization routine. Input is not expected
form SYSRES. A logical record is required
for continued processing.

Dummy Phase Flag On

The first phase card is missing and a
linkage-editor-supplied substitute phase
card has been generated. The relocatable
library is not a factor to be considered at
this time. Another logical record is not
required for continued processing.

Operations with the Relocatable Library

The dummy phase flag is off. The physical
location of the relocatable library is
determined:

1. When the relocatable library is on

Service Programs - Linkage Editor 73

SYSRLB, the monitor gets the logical
record.

2. When the relocatable library is on
SYSRES, the monitor branches to obtain
the 12-2-9 processor, if necessary,
before getting the logical record.
Based on the high probability the
12-2~-9 processor will be used, the
fetch minimizes tape movement.

Starting at location GETGO all
situations share common processing. The
routine continues by performing these
steps:

1. Branches to the action routine if
action card images are expected.

2. Branches to the identify control card
routine if the first column of the card
image is blank.

3. Scans for a specific 12-2-9 card type.

4. Builds a dummy phase card, sets up the
link register address, and branches to
the control card fetch routine if no
phase card has been read.

5. Sets up the link register address, and
branches to the 12-2-9 card fetch if a
match is found in the scan and a phase
card has been read.

FETCH SUBROUTINES (CTLFCH OR TNTFCH)
CHART JD

Objective: Fetch the card processor
reguired by the calling routine.

Method: Depending on the entry point, this
routine initializes to fetch either the
control card processor or the 12-2-9 card
processor. After this initial step has
been completed, the remainder of the rou-
tine is common to both types of fetch.

The routine determines if the processor
is already in main storage. If it is, the
routine branches to the address in the link
register because no fetch is necessary. If
it is not present, the routine tests a
program switch to determine if Pass 1 is to
be a single or multiple coreload. Test
results and actions taken are:

e All one’s condition. Branch to load
routine (LODORG, moved into the TXT
buffer during core initialization) to
fetch Pass 1 in a single coreload.

» All zero's condition. Get the name and
origin of the card processor to be
fetched and issue the fetch supervisor
call.

¢ Mixed one's and zero's. Branch to the
address in the link register, the
desired processor is already present.

Note: The link register is used to

properly route the program to the next
sequential instruction. By modifying this

74 IBM S/360 BOS System Control (16K Tape)

address to the starting address of the
desired processor, this sequence is estab-
lished: call for fetch, issue fetch, apd
execute card processor. :

INPUT SUBROUTINE (GETRCD) CHART JE

Objectives:

1. Branch to get a logical record.
2. Update record counters.

3. Test for end-of-file.

4. Test for wrong-size records.

Method: This routine determines if a logi-
cal record is needed by comparing the work
count with the record count. If necessary,
it branches to Chart JF to get the record.
If end-of-file or wrong-size record is
found, the routine issues the appropriate
error message and aborts.

If the input is good, the routine
updates the physical record count, and
resets the logical record count.

If no physical record was required or if
counter updating and error checking are
complete, the routine is located at SKPRD.
There it increases the logical record count
by one and returns to the address in the
link register.

GET RECORD SUBROUTINE (CHKRTN) CHART JF

Objectives:

1. Determine the tape movement required to
obtain the desired physical record.

2. Call the I/0 routine necessary to posi-
tion tape or read a physical record.

Method: This routine restores the main
input CCW and determines the relative loca-
tion of the record desired on the tape.
Based on the signed difference between the
present position and the desired position,
the routine performs these steps:

1. Plus difference - backspaces tape.
2. Minus difference - forward spaces tape.
3. 2Zero difference - does not move tape.

After orienting the tape, the routine
initializes the CCW to read and branches to
the 1I/0 routine, Chart JR, to physically
read the record. When I/0 is finished, the
routine increases the position count by
one, indicating the record has been read,
and returns to the address in the link
register.

N

IDENTIFY CONTROL CARD (CTLRTN) CHART JH

Objective: Inspect the operation field of
control cards to determine card type and
appropriate action to be taken.
Entry: From the GETCD routine.
Method: This routine branches to the posi-
tion routine to obtain the location of the
operation field from the card image. Based
on conditions found, the routine performs
in this manner:
1. No operation field found.
GETCD.
2. Entry card found. Branch to CTLCHK.
3. Program not in control mode. Print
card in error and branch to GETCD.
4. Phase card found. Branch to CTLCHK.
5. Action card found. Branch to GETCD.
6. . No control card found. Determine if a
control card is expected.
a. Print an error message and branch to
GETCD if it is expected.
b. Branch directly to GETCD if no con-
trol card is expected. '
7. 1Include card found. Continue at
CTLCHK.

Branch to

Starting at location CTLCHK the routine
tests the submodular flag, SUBFLG, to
determine the condition of the search for
control card and control card found switch-
es.

1. Submodular flags both on.
GETCD.

2. Submodular flags both off. If PHASE or
ENTRY, and AUTOLINK is to be done,
decrement the record count and branch
to ALNKPR. Otherwise, print the card
and branch to the INCLUDE routine,
Chart JK, or CTLFCH, Chart JD, to get
the control card processor.

3. Control card found switch off, search
for control card switch on. Turn on
control card found switch and branch to
GETCD.

Branch to

POSITION TO OPERAND SUBROUTINE (POSRTN)
CHART JJ

Objective: Position a register address
pointer to a desired field within a card
image.

Method: This routine searches for the
first nonblank character. If the entire
card is blank, the routine branches to the
address in the link register. If a non-
blank character is found, the routine must
search for a field-delimiting character.
valid delimiters are: blank, comma, left
parenthesis, right parenthesis, minus sign,
or plus sign.

If the list of field delimiters is
exhausted and none has been found in the
card image, the routine prints a message
and branches to location GETCD. If the
delimiting (stop) character is found, the
routine:

1. stores the field origin

2. calculates the field length

3. saves the delimiting character

4. returns to the address in the link
register.

Note: When the position routine is
unable to find the field, it branches to
the address in the link register. If the
field is found, the position routine modi-
fies the link register address so that the
branch is made to the instruction following
the unconditional branch.

INCLUDE CARD PROCESSOR (INCRTN) CHART JK

Objectives:

1. Check the operands of the INCLUDE card
image to determine:
a. INCLUDE level
b. use of submodular structure.

2. Find a desired module in the relocat-
able library.

Entry: From the identify control card
routine, Chart JH.

Method: This routine branches to the posi-
tion routine to locate the operand field of
the include card image. A totally blank
field causes the card image to be ignored.
Because the include card image can have
optional operands, this routine determines
the options used.

Option 1

, (namelist) shows the same level of include
condition. This means the control sections
specified in the namelist are either in the
main input stream (SYS000) or are within
the same module (specified by a previous
include) in the relocatable library. When
option 1 is identified, the routine:

1. Branches to the scan routine, Chart JM,
to validity-check the operand format
and put the control section names,
specified in the namelist, into a work
area.

2. Turns on a switch (same level), and
sets the submodular level indicator at
the appropriate value.

3. Branches to ESDCHK to insure that the
12-2-9 processor is resident in main
storage because ESD processing can be
expected.

Service Programs - Linkage Editor 75

4. Branches to GETCD for the next card
image.

Option 2

Modulename, (namelist) shows this is not a
normal include. This means the control
sections specified in the namelist are in
the relocatable library. Before testing
for option 2 or option 3, the routine puts
the module name (first operand) into a work
area. When option 2 is identified, the
routine: ‘

1. Branches to the scan routine to
validity-check the operand format and
put the control section names, speci-
fied in the namelist, into a work area.

2. Branches to the nesting routine, Chart
JQ, to update the nest list.

3. Sets the submodular level indicator at
the appropriate level.

4. Continues at location SCHDT1.

Option 3

Modulename shows a normal include. This
means the specified module is in the
relocatable library. When option 3 is
identified, the routine branches to the
nesting routine, Chart JQ, to update the
nest list. It continues processing at

location SCHDT1.

Starting at SCHDT1, the routine is gen-
eralized to process either option 2 or
option 3 because both options use the
relocatable library. It insures that the
12-2-9 processor is resident in main stor-
age because ESD processing is expected. It
tests the library flag (IOSFLG) for one of
three possible conditions.

1. No library. Go to LIBERR for error
processing.

2. Library not open. Go to LIBRTN and
LABCK2, respectively, to open the file.

3. Library open. Search for the module
name in the relocatable library.

If the module name cannot be found in
the relocatable library and end-of-file has
been detected, the routine backspaces the
file, down dates the nest list, and tests
for AUTOLINK. If end-of-file has not been
detected, the routine down dates the nest
list and tests for AUTOLINK without back-
spacing tape.

If no AUTOLINK option is specified, the
routine branches to send an error message
and get another card image. If the AUTO-
LINK option is found, the routine branches
to the AUTOLINK routine, cChart JP.

76 IBM S/360 BOS System Control (16K Tape)

If the module is found in the relocat-
able library, the routine saves position
and count information, prints an AUTOLINK
message if required, and branches to GETCD
for the next card image.

Note: Whenever a name list is speci-
fied, submodular processing (creation of
phases from named control sections) will
occur.

ACTION CARD PROCESSOR (ACTRTN) CHART JN

Objectives:

1. Determine the action to take place, and
set print control flag switches accord-
ingly.

2. Sense the first nonaction card.

Entry: From the Linkage Editor monitor
routine when action cards are being col-
lected.

Method: This routine branches twice to the
position routine. The first branch gets
the operation field for testing. The sec-
ond branch gets the operand field for test-
ing.

Operation Fields: If the current card
is not a control card, or if it is a nonac-
tion card, go to ACTGO to establish the
necessary print routine for mapping. A
blank operation field causes the routine to
branch to GETCD.

Operand Field: No operand, or an oper-
and of MAP with SYSLST unassigned, or an
undefined operand cause an error message to
be sent and the routine to go to GETCD. An
operand of CLEAR causes a branch to GETCD.
(CLEAR is a valid operand for disk only.)
An operand of NOMAP causes the routine to
turn off the action switch in the print
control flag before branching to GETCD. An
operand of MAP with SYSLST assigned causes
the routine to turn on the action switch in
the print control flag before branching to
GETCD.

I/0 SUBROUTINE (IORTN) CHART JR

Objectives:

1. Determine if a SYSRES reposition test
is to be made.

2. Issue the proper supervisor call
instruction to get the necessary I1/0
operation performed.

Entry: From any routine requiring I/O to
be performed.

Method: This routine tests the flag at
location IOSFLG to determine if a SYSRES
reposition test is to be made. If not, it
issues a supervisor call to execute the
channel program, waits until I/O is fin-
ished, and returns to the address in the
link register.

If a SYSRES reposition test is neces-
sary, the routine issues a special call to
determine if SYSRES has been moved. If it
has not been moved, the special request
causes the channel program to be executed.
When I/0 is complete, this routine exits to
the address specified in the link register.

If the special request showed that
SYSRES had been moved, the routine exits to
location RPSRTN within CHKRTN, Chart JF.

Starting at RPSRTN the get record sub-
routine branches to location LABCK1l, Chart
JG, to locate the first record of the
relocatable library (the header). It tests
the position count to find the position of
the desired record in relation to the
beginning of the relocatable library.

After positioning the tape, it reads the
record and exits to the address specified
in the link register.

PASS 1-CORELOAD 2

ESD PROCESSOR (ESDRTN) CHART KA

Objective: To process ESD items into the
linkage table and the control dictionary.

Entry: From GETCD, via the routine that
fetched the card processor.

Method: The routine tests for a submodular
structure. If it is found, it either
branches to down date the nest list (Chart
JQ, if this is primary input, the point the
submodular structure was requested), or it
branches to GETCD after resetting the sub-
modular flag.

If the initial test determined no sub-
modular structure, this routine calculates
and saves number of bytes to be processed.
It checks the validity of values in the ESD
type field. Types 0, 1, 2, 4, and 5 are
valid. Other values. are in error, and the
routine branches to location ERR40 for
error handling.

CONTROL ESD ITEM FOR PROCESSING
DICTIONARY
LD SD PC CM ER
LD aa ba ca da eq
LR ab bb cb db eb
SD ac bc cc dc ec
PC ad bd cd dd ed
CM ae be ce de ee
ER af bf cf df ef
NO MATCH ag bg cg dg eg
Figure 44. ESD Control Dictionary Decision

Table

The ESD item name or label is compared
with control dictionary name fields. Fig-
ure 44 illustrates all possible combina-
tions resulting from this comparison. You
can determine the action taken by the rou-
tine for a given condition by looking first
at the ESD item being processed. Next,
look at the control dictionary entry whose
name field matches the ESD item. The two
alphabetic characters at the junction are a
key to the actions taken by the routine. A
provision is also made for a search that
resulted in the no-match condition. Again
the junction of the ESD item and the no-
match condition contains a key that points
you to the action taken by the routine.

aa: Assembled origins must agree and
the ESD LD must be assigned. Compare the
control dictionary number of the ESD LD
with the control dictionary number of the
control dictionary entry (an LD). Equal
control dictionary numbers indicate exact
duplicate LD's. Therefore, ignore this ESD
item. If the control dictionary numbers do
not match, compare the label fields of the
control dictionary entries pointed to by
the ESD LD and the control dictionary LD.
If the name fields do not match, an error
condition exists. If a match is found, the
routine compares the phase number of the
matching control dictionary entry with the
current phase number. If these numbers do
not match, the routine branches to ELBNCD
to put the ESD LD into the control
dictionary, and update the linkage table.
This condition can occur when submodular
structure is being used. If the phase
numbers match, set a possible (duplicate
entry) switch and exit to ESDRET.

Service Programs - Linkage Editor 77

ab: Same as aa.

ac: Assembled origins must agree. Com-
pare the control dictionary number
{(pointer) of the ESD LD with the control
dictionary number of the control dictionary
item (SD). A no-match condition is an
error. A match allows this ESD item to be
ignored by causing the routine to branch to
ESDRET.

ad: This condition is not possible
because a private code has a blank name
(label) field.

ae: This is an error-condition branch
to ERRU46 for error handling.

af: Assembled origins must agree.
Force the ESD LD to become an LR type.
Branch to location ELBINT to insert the ESD
LD as an LR in the control dictionary
{overlaying the old control dictionary
entry). Update the linkage table (Chart
KE), and branch to ESDRET.

ag: Update the control dictionary num-
ber and control dictionary address for a
new entry. Insert the ESD LD in the con-
trol dictionary, update the linkage table,
and branch to ESDRET (Chart KE).

ba: If the control dictionary item has
been resolved (assigned to a previously
processed SD), branch to ERR43 for error
handling. If the ESID number of the LD/LR
control dictionary entry matches the ESID
number of the item being processed (ESD-SD)
and the assembled origins also match, the
routine branches to location ELBINT (Chart
KE). At that location the control dic-
tionary item (LD/IR) is replaced (overlaid)
with the ESD-SD item. The routine updates
the linkage table and exits via ESDRET.
When the ESID numbers and assembled origins
match, this control section has been pre-
viously defined as an entry in the assem-
bly. Any condition other than matching
ESID numbers and matching assembled origins
causes a branch to ERR43 for error han-
dling. '

bb: Same as ba

be:
item.
phase,

Check the phase number of this SD
If it has been processed in this
ignore it. If it has not been proc-
essed, determine if it is in the root
phase. If it is not in the root phase,
move the ESD item (SD) into the control
dictionary, replacing (overlaying) the
control dictionary entry (an SD). Update
the linkage table and exit via ESDRET
(Chart KE). If the ESD item is in the root
phase, set the control dictionary number
equal to -1 (a switch in the linkage table
that means: bypass all future references

78 IBM S/360 BOS System Control (16K Tape)

to this SD). Update the linkage table, and
exit via ESDRET.

bd: This condition is not possible
because the PC has a blank name (label)
field.

be: This is an error condition. Branch
to ERR46 for error handling.

bf: Branch to ELBINT to overlay
(replace) the ER type control dictionary
entry with the ESD-SD item. Update the
linkage table and exit via ESDRET (Chart
KE) .

bg: Branch to ELBNCD to update the
control dictionary number and the control
dictionary address. Move the ESD-SD item
into the control dictionary, update the
linkage table, and exit via ESDRET (Chart
KE).

ca: Not possible because LD entry in
the control dictionary would have a blank
name field.

cb: Not possible because LR entry in
the control dictionary would have a blank
name field.

ccs Not possible because SD entry in
the control dictionary would have a blank
name field.

cd: Branch to ELBNCD to update the
control dictionary address. Move the ESD-
PC into the control dictionary, update the
linkage table, and exit via ESDRET (Chart
KE) .

ce: Ignored.

cf: Not possible because ER entry in
the control dictionary would have a blank
name field.

€g: Same as cd.

da: This is an error.
for error hamndling.

Branch to ERRU46

db: Same as da.
dc: Same as da.
dd: Bypass the control dictionary entry

If the scan
process as

(PC) and continue to scan.
ends without another match,
described in dg.

de:
length.
the control dictionary.
table and return via ESDRET

Determine common with the longest
Keep the longest-length value in
Update the linkage

(Chart KE).

df: Branch to ELBINT to replace
(overlay) the ER type control dictionary

——

entry with the ESD-Common. Update the
linkage table, and exit via ESDRET (Chart
KE).

dg: Branch to ELBNCD to update the
control dictionary number and the control
dictionary address. Move the ESD-Common
item into the control dictionary, update
the linkage table, and exit via ESDRET
(Chart KE).

ea: Force the LD control dictionary
entry to type LR. Branch to EUPDLT to
update the linkage table, and return via
ESDRET {(Chart KE).

eb: Same as ea.

ec: Branch to EUPDLT to update the
linkage table, and return via ESDRET (Chart
KE).

ed: Not possible because the ER item
cannot have a blank name field.

ee: Branch to EUPDLT to update the
linkage table, and return via ESDRET (Chart
KE).)

ef: Branch to ELBINT to replace
(overlay) the ER type control dictionary
entry with the ESD-ER item. Update the
linkage table, and return via ESDRET (Chart
KE).

eg: Branch to ELBNCD to update the
control dictionary number and control
dictionary address. Move ESD-ER item into
the control dictionary, update the linkage
table, and exit via ESDRET (Chart KE).

The entire control dictionary is scanned
for unresolved LD/LR entries. If any are
found, they are tested to determine their
status.

1. If the entry cannot be resolved, con-
tinue the scan.

2. If the entry is to be bypassed
(negative control dictionary number),
store the scan.

3. If the entry is resolved, flag it as
assigned and continue the scan.

The scan ends when the dictionary is

exhausted.

TXT PROCESSOR (TXTRTN) CHART KJ

Objective: Process a TXT card image.
Entry: From GETCD, via the routine that
fetched the card processor.

Method: This routine branches to the sub-
routine at LTESID (Chart JS) to get control
dictionary number, control dictionary

address, and relocation factor. If the
ESID has not been processed, the routine
branches to ERR70 for error handling. If
this ESID number is to be ignored, the
routine branches to RDNEXT to get the next
record. If this ESID has been processed,
the routine tests for a zero length text
card. - A nonzero length causes the routine
to add the assembled origin and the reloca-
tion factor.

If the text address does not fit within
the phase boundaries, the routine branches
to ERR50 for error handling. If the bound-
aries are not exceeded or if a zero length
text card was found earlier, the routine
continues at location BLKTXT.

Starting at location BLKTXT, the routine
loads the text buffer address into a reg-
ister. It compares the length of the
incoming text records with the length of
the text records in the output area. If
the length is the same, the routine branch-
es to location MVTXT.

If the length is not identical, the
routine determines if the output area is
empty. If it is not empty, it branches to
location OPTXT to output the text in the
buffer area, thereby emptying the buffer
area. It restores control information and
reenters this routine at location BLKTXT to
repeat the processing sequence. If the
output area is empty, the routine moves the
length of the incoming record into the
control information and branches to
MVTXT+4.

Starting at location MVTXT, the routine
finds the address of the next available .
position in the output area. At location
MVTXT+4, it determines if the output area
has. space available. If no space is avail-
able, it performs the steps described pre-
viously as starting at location OPTXT. If
space is available, the routine moves the
incoming text record into the output,
updates the record number, and branches to
read the next record.

RLD PROCESSOR (RIDRTN) CHART KK

Objective: Process RLD cards.
Entry: From GETCD, via the routine that
fetched the card processor.

Method: On entry to this routine, program
switch RLSW1 is set to the NOP state to
allow R and P pointer processing. Program
switch RLWRIT is set to the branch state to
show RLD's not wanted. When the routine
finishes processing each RLD card, it
branches to RLWRIT to write out RLD records

Service Programs - Linkage Editor 79

on SYS002. If end-of-card has not been
reached, the routine sets up a pair of
registers. One register points to the
address of the item to be processed, the
other contains the count of bytes proc-
essed. When the routine falls through
switch RLSW1, it resets it to force proc-
essing of the constant. RLSW1 is set to
branch when the R and P pointers are the
same as those previously processed.

P-pointer processing performs these
steps:

1. Branch to LTESID to get the control
dictionary number from the linkage
table.

2. Branch to ERR70 for error handling
if the ESID is not processed.

3. Branch to RLSTP to bypass this item, if
the ESID number is negative.

4. Branch to ERR55 if the P-pointer does
not point to SD/PC item.

5. Reset program switch RLWRIT to NOP
indicating RLD's wanted at this time.

6. Save the control dictionary number in a
register.

R-pointer processing performs these
steps:

1. Repeat steps 1 and 2 of P-processing.

2. Force a positive control dictionary
number from the negative value sup-
plied, indicating the reference is to a
nonprocess ESD.

3. ©Save the control dictionary number in
the R-pointer field if the ESID has
been processed and it is not to be
bypassed.

4. Test the ESD type, and if it is not an
ER, scan the RILD card image for the
constant. If ER type is found, set a
flag in the R-pointer field signifying
to Pass 2 use the relocation factor
plus the assembled origin as the relo-
cation attribute.

Constants are processed by this routine
starting at location RLCONS in this way:

1. Return to scan RLD card image, if there
are more items belonging to these R and
P pointers.

2. Return to scan RILD card image, if no
more items are found, after resetting
program switch RLSW1 to NOP (forcing
pointer processing).

When the card image scan is finished,
the routine branches to RLWRIT. If no
RID's are wanted at this time this program
switch is set to branch to RDNEXT. When
the switch is in the NOP state, the routine
updates the total byte count of RLD's and
continues at location BLKRLD. The instruc-
tions starting at BLKRLD perform the same
functions for RLD records as the instruc-
tions at BLKTXT perform for TXT records
(see TXT Processor).

80 IBM S/360 BOS System Control (16K Tape)

END CARD PROCESSOR (ENDRTN) CHART KM

Objective: Process an END card to locate
and save a transfer address for a phase.

Entry: From GETCD, via the routine that
fetched the card processor.

Method: To initialize for END card proc-

essing, the routine first determines if a

submodular control card has been found. If

it has been found, the routine performs

these steps:

1. Set up return position and new posi-
tion.

2. Reset flags SUBLVL and SUBFLG.

3. Go to END card processing.

If the submodular card has not been

found:

1. Go to END card processing when primary
input is found.

2. Go to END card processing if the input
is not primary (first INCLUDE card with
a namelist field), and after the next
list has been down-dated.

Actual END card processing begins at
location ENDPRC. The routine determines if
another transfer address has been accepted.
If it has, branch to ENOXFR to bypass this
END card. If a transfer address has not
been accepted, the END card is examined for
transfer information after canceling the
previously established transfer address.

If the card contains a label, that address
becomes the transfer address. Any END card
with no ESID number and a blank name field
indicates no transfer address available for
this card. An END card with an ESID number
(relative to the control section in which
the end occurs) causes the routine to pick
up the related control dictionary number.
The routine substitutes the control dic-
tionary number for the ESID number.
(Provision is made for handling not-
processed and bypassed ESID numbers.)

If a label was present in the END card
or if the control dictionary number
substitution was successful, the routine:
1. Turns on the transfer switch for phase

end.
2. Puts the transfer information into an
area (X-area) for later use.
It next scans the control dictionary for an
unassigned LD/LR. When found, the routine
determines if the control dictionary number
is negative. A positive number at this
point is an error. When the scan is com-
plete, the routine sets up and executes a
loop to destroy the linkage table (built
separately for each module).

The routine tests switch DERDSW to
determine if control section length is
required. If not, the routine tests the
end-entry flag. If it is off, the routine
exits to GETCD. If it is on, it turns it
off and exits to the AUTOLINK processor,
Chart JP.

If control section length is required,
the routine tests card column 29. If
column 29 is non-zero, the length is inval-
id. If zero, the next possible phase orig-
in becomes the sum of the current possible
phase origin and the control section
length. Switch DERDSW is set to indicate
that the control section length has been
processed. The routine exits to either
GETCD or to the AUTOLINK processor.

REP PROCESSOR (REPRTN) CHART KN

Objective: Process a REP patch card so
that its card image resembles a TXT card.
It can then be processed as another TXT
card.

Entry: From GETCD, via the routine that
fetched the card processor.

Method: After printing the card image, the
routine obtains the hexadecimal origin
specified by the card. It branches to the
HEXRTN subroutine to convert the origin to
binary, and stores this information in
column 5 of the REP card image. Similarly,
the ESID number in column 14 is converted
and returned to column 15.

The text portion of the REP card is
converted from digits, four at a time.
Each set of four digits must be followed by
a comma or blank. A comma indicates more
text follows, and the routine loops through
the conversion sequence. 1I1f a blank is
found, the routine stores the byte count in
column 11 (two bytes for each set of hexa-
decimal digits). A blank indicates no more
text is available on the REP card image.
Now, the REP card image is compatible with
a TXT card image, and this routine branches
to the TXT processor, Chart KJ.

PASS 1-CORELOAD 3

PHASE PROCESSOR (PHSPRO/PHSFIN) CHART LC

Objective: Process a phase card image.

Entry: From the phase scanning routine,
Charts LA and LB.

Method: This routine checks phase names
and takes the following actions:
1. $ type phase name. Sets a switch for
Pass 2.
2. §$$A type phase name.
collating sequence.)
a. This phase name low. Branch to
"ERR21 for error handling.
b. This phase name high or equal. Con-
tinue processing.

(Lowest form in

The origin field of the phase card image
is processed next. The processing of ori-
gin depends on how origin is defined. The
definitions and associated processing are:
1. ROOT: (First phase only). Move X'01°

into ROOTNO, zero the control diction-
ary number, and set the root origin to
equal the end-of-supervisor address.

2. LABEL: (Cannot be in first phase
because there would be nothing to
reference). Search the control
dictionary for a matching label and
take these steps:

a. SD: Add relocation factor to assem-
bled origin and go to ISDISP.

b. Assigned LD/LR: Get the SD item
pointed to by the ESID and add its
relocation factor to the assembled
origin. Go to ISDISP.

c. Phase entry: Test for a gualifier
{a pointer used to reference a
phase). If not found, go to
ISDISP. If found, get the phase
number, and if it matches the
qualifier, branch to ISDISP.

3. S: oOrigin is end of supervisor. Go to

ISpisp.

4. ASTERISK: Origin is end of previous
phase or, if first phase, end of super-
visor. Go to ISDISP.

5. BLANK: Go to ISDISP.

At location ISDISP any plus or minus
displacement is added to the base just
determined. If a minus sum is found, the
routine branches to ERR24 for error han-
dling. Otherwise, the newly created phase
origin is put on a doubleword boundary, a
control dictionary image is built in loca-
tion SYMBOL, and the routine tests for a
first-phase condition. First phase causes
a branch to NEWPHS. Phases other than the
first cause a branch to TRFRAD, Chart LG,
to determine the transfer address.

At location NEWPHS the new phase header
is written on tape for use by the following
passes, flags are reset, and the routine
exits to GETCD.

Service Programs - Linkage Editor 81

ENTRY PROCESSOR (ENTRTN) CHART LH

Objective: Supply a transfer address if at
this point a new transfer address is
desired.

Entry: From GETCD, via the routine that
fetched the card processor.

Method: This routine locates the operand
field of the ENTRY card image via POSRTN.
Control goes to TRFADR to determine the
final transfer address. Wwhen control is
returned to this routine, it searches for a
common in the control dictionary. When
found, it adds the length of the common to
the assembled origin and to the previous
address. After all commons have been pro-
cessed, it updates the end of supervisor
address and the linkage editor communi-
cations region.

It next searches the control dictionary
and performs these steps, depending on the
control dictionary entry found:

1. Phase entry. Add length of common to
both high and low storage addresses and
continue the scan.

2. SD/PC entry. Continue the scan.

3. Other entries. Add length of common to
the relocation factor and continue the
scan.

When the end of the control dictionary
is reached, the routine sets the overriding
transfer address to zero and tests the
operand field.

1. Blank operand. Transfer address
remains a zero. The routine positions
the files for Pass 2 and fetches that
pass.

2. Nonblank operand. Search the control
dictionary for a matching label. 1If
none is found, process as in step 1.
If the label is invalid, continue the
scan. If the label is valid, add the
relocation factor to the assembled
origin, make the sum the transfer
address, and exit as described in step
1.

PASS 2

LINKAGE EDITOR ($LNKEDTF) CHARTS MA TO MG

Objectives:

1. To relocate addresses and assemble core
image blocks from TXT input records.

2. To compress the control dictionary
entries to 8 bytes.

3. To print the Linkage Editor MAP if it
has been requested.

82 IBM S/360 BOS System Control (16K Tape)

Entries: Fetched by Linkage Editor Pass 1.
The entry point label is START1 on chart
MA.

Method: If there are no-entries in the
control dictionary Pass 2 and Pass 3 are
bypassed and Linkage Editor Pass 4
(SLNKEDTL) is fetched. Pass 2 prints the
Linkage kEditor MAP, if requested, and
assembles the core image blocks.

MAP

The MAP is printed on SYSLST.
be either a printer or a tape. First a
heading line is printea. Then a scan is
made from the beginning of the control
dictionary, and information is listed from
all common type entries. Then control-
section and entry-point information for
each phase is printed. To finish the MAP,
the control dictionary is scanned again and
all unreferenced symbols, EXTRN's, are
listed. EXTRN's may be followed by any of
these messages:
1. ROOT PHASE OVERLAID BY SUCCEEDING PHASE
2. POSSIBLE INVALID ENTRY POINT
DUPLICATION IN INPUT
3. INVALID TRANSFER LABEL ON ENTRY OR END
STATEMENT IGNORED
4. CONTROL SECTIONS OF
INPUT
When the MAP is complete, the routine
branches to DECSON to compress the control
dictionary entries.

SYSLST may

ZERO LENGTH IN

Compress Control Dictionary

Each control dictionary entry is reduced
from 16 bytes to 8 bytes. This is done by
dropping the name field, or first 8 bytes,
from the entry. The routine looks at the
name field at this time to see if storage
protection or Supervisor is specified. If
the Linkage Editor output is to be cata-
loged, the end of supervisor address and
the storage-protected problem-program
address are changed in the supervisor com-
munications region. This is the last time
the name field is needed by Linkage Editor.

Assemble Core Image Blocks

TXT card images are contained in blocked
records on SYS001. :

The output block number that each logi-
cal TXT record will go into is computed.
As long as the block number of the TXT

record equals the number of the block being
built in storage, the TXT record is moved
into the block.

When the TXT record block number is
higher than the number of the block in
storage, the block in storage is written on
the output tape. This condition is
referred to as a forward origin. The out-
put tape is SYS000 until the first backward
origin, and alternates with SYS002 each
time a backward origin is detected.

When the TXT record block number is less
than the number of the block in storage,
the block in storage is written on the
output tape. This condition is referred to
as a backward origin. The action to be
taken is determined by what output tape has
the most blocks written on it.

When the first backward origin occurs,
the alternate output tape, SYS002, has no
blocks written on it. Refer to Figure 45.
The current output tape must be backspaced
until it is positioned before the first
block written on it. Then the output tapes
are switched. Blocks are read into storage
and copied on the alternate tape until the
block in storage equals the block number of
the input TXT record. Input TXT records
and blocks already written on the output
tape are merged and written on the alter-
nate output tape.

When another backward origin occurs, two
conditions can exist. Refer to Figure 45.
The previous output tape may have more
blocks on it than the current output tape.
Blocks must be copied from the alternate
tape to the current tape until they have
the same block count. The action that is
then taken is the same as when the current
output tape has the most blocks. Refer to
Figure 45.

Both tapes must be backspaced to a point
where the blocks on both tapes are dupli-
cates. This point is referred to as the
minimum, MIN. The output tapes are
switched and blocks are copied on the
alternate tape from the previous output
tape until the block in storage equals the
block number of the input TXT record. The
action taken is the same from this point as
for the first backward origin.

An XFR record in the input from SYS001
indicates the end of a phase. If the
transfer address of the phase is not in the
XFR record, the relocated phase origin
address is used as the transfer address for
the phase. 1f there are more blocks on the
alternate tape than on the current tape at
this time, they must be copied on the cur-
rent tape.

All phases are assembled into core image
blocks in the same manner. The final out-
put is on SYS000 if the total number of -
backward origins is even. It is on SYS002
if the total is odd. When a tape mark is
encountered on 5YS001, all phases are pro-
cessed and the tapes are positioned for
Pass 3.

First Backward Origin When Alternate Output Tape Has No
Block

Alternate

MIN

Core Image Blocks

e EAER Y ey EaEa

Current

TXT concerns block 2
‘Backspace current fape to MIN
Backward Origin When Alternate Output Tape Has More

Blocks Than Current Tape
MIN Alternate

1

1
! Core Image Blocks
1

SN Py —

Current

TXT concerns block 3
Copy blocks 5, 6, and 7 and backspace both tapes to MIN

Backward Origin When Current Output Tape Has More Than
Or the Same Number of Blocks as the Alternate Output Tape

M! N Alternate

!
| Core Image Blocks
I

AER Ry rygasd

Current

TXT concerns block 3
Backspace both tapes to MIN

Backward Origin in Linkage
Editor Pass 2

Figure 45.

Block Count Labels

X - number of the output block to which
this input TXT record belongs.

Service Programs - Linkage Editor 83

Y - number of the block in the output area
of storage.

RIPT - number of blocks written on alter-
nate output tape.

ROPT - number of blocks written on current
output tape.

MIN - least number of blocks that would not
have to be copied to alternate tape when a
backward origin occurs.

OPTCT ~ total number of output blocks for
all phases.

PASS 3-CORELOAD 1

INITIALIZATION (INITIAL) CHART NA

Objectives:

1. Save logical unit assignment for text.
2. Open the work and RLD tape files.

3. Print header.

Entry: Fetched by Linkage Editor Pass 2.
Method: After saving the logical unit
assignment for TXT card information, this
routine positions the RLD and work tapes to
the beginning of the first file. If the
user has not requested MAP, this routine
branches to COMPUTE, Chart NB, to calculate
the size and estimated usage of the RLD
buffer.

If the user requested MAP, this routine
determines the number of phases processed
and lines needed for the header, and com-
pares it to the number of print lines
remaining for this particular page. 1If
enough print lines remain, a blank line is
printed, and SYSIST is checked for end-of-
file (EOF). 1If EOF is reached on SYSLST,
Pass 4 is fetched to process the error. If
EOF is not reached, this routine branches
to COMPUTE, Chart NB.

If there are not enough print lines
available to print the header, the date is
moved to the communications region. If
SYSLST is not a tape, the CCW is set to
perform a skip to channel 1, the paper is
positioned on the printer, and the header
is printed. SYSLST is then checked for
EOF. If it is not EOF, the line count is
updated by subtracting two from the maximum
line count and storing the result in the
remaining lines count. A blank line is
printed and a branch is made to COMPUTE,

_Chart NB.

If SYSLST is assigned to a tape unit and
MAP is requested, the ASA code is set to

84 IBM S/360 BOS System Control (16K Tape)

skip to channel 1 before printing, and the
CCW is set for writing on tape. The header
is then written on tape and, if EOF is fiot
reached on SYSLST, the line count is
updated, a blank line is written on tape,
and a branch is made to COMPUTE, Chart NB.
If EOJ is reached on SYSLST, Pass U is
fetched to process the error.

COMPUTE BUFFER SIZE (COMPUTE) CHART NB

Objectives:

1. Compute size of RLD input buffer.

2. Determine amount of usage for RLD buf-
fer.

Entry: From the Initialization routine for
Pass 3, Coreload 1 (INITIAL), Chart NA.

Method: This routine uses the greater of
either the true end address of this RLD
processor phase or the end address of Pass
3-Coreload 2, as the starting address of
the RLD input buffer for this pass.

To compute the end address of the RLD
buffer and to determine the amount of usage
for this buffer, several computations are
performed.

TXT Buffer Computation

This routine subtracts the size of the area
containing the RLD input records from the
address of the last compressed control
dictionary entry, and compares the result
to the address of the last compressed con-
trol dictionary entry minus the text block
size. If the first calculation is greater
than the second calculation, the resulting
address of the second calculation is used
as the address of the TXT buffer. If the
first calculation is less than or equal to
the second calculation, the resulting
address of the first calculation is used as
the address of the TXT buffer.

Estimated RLD Buffer Usage Computation

This routine multiplies the number of bytes
of RID information processed by Pass 1 by
1.5 to determine the maximum increase for
the RLD items. The result is the estimated
RLD usage for this buffer. This routine
then gets the number of phases processed by
Pass 1, multiplies by 32 (the size of the
phase header in the RLD buffer), and adds
the result to the estimated RLD usage just
calculated. The result is the estimated
usage for the entire RLD buffer.

Estimated End of RILD Buffer Computation

This routine subtracts the address of the
RLD buffer from the address of the text
buffer to get the size of the RLD output.
This information is stored in the CCW for
the work tape. The number of bytes of RLD
information processed by Pass 1 is then
added to the address of the RLD input buf-
fer to get the estimated end address for
the RLD buffer.

If the RLD puffer is not large enough to
hold all the RLD's for every phase pro-
cessed in Pass 1, the write-out switch is
set to indicate only the RLD's for one
phase are to be read in and processed at
one time. If the buffer is large enough,
all the RLD's are read in and processed.

The RLD and work tape CCW's are then
initialized for read and write, respective-
ly, and a branch is made to RLDRD to read
the RLD records from tape.

READ RLD TAPE (RLDRD) CHART NC

Objectives: Read the records from the RLD
tape.
Entry: From the Compute Buffer Size rou-

tine (COMPUTE), Chart NB.

Method: This routine reads a record from
the RLD tape. If there are no more RLD's
to be read, this routine branches to the
end-of-RLD's routine (ENDLPH), Chart NN. If
the record read was a phase record, this
routine branches to PHRCD to process the
record. TIf it was not a phase record and
this is the first time through this rou-
tine, Pass 4 is fetched to process the
error, indicating the first entry on the
RLD tape was not a phase record. If a
phase record was not read and this was not
the first time through this routine, a
branch to RLDFMI to format the RLD's is
made.

PROCESS PHASE RECORD (PHRCD) CHART ND

Objectives:

1. Print phase name and transfer address.

2. Write RLD's for phase on SYS001.

3. Find address of phase entry in control
dictionary.

4. Compute hiyh address of phase in stor-
age.

5. Build header.

Entry:
(RLDRD),

From the Read RLD Tape routine
Chart NC.

Method: If this is the first time through
this routine, a branch is made to PHMOVE to
format the phase entry. If this is not the
first time through this routine, the code
indicating the end of the previous phase is
moved to the RLD buffer. Using the PRTHDR
subroutine, the phase name and transfer
address are then printed.

If the RLD's are to be written on tape
on a per-phase basis, they are written out
on the work tape (5YS001), and the address
of the RLD buffer register is reinitial-
ized. If EOF is reached while writing on
SYS001, Pass 4 is fetched to process the
error. If EOF is not reached, the first
time switch is turned off, and the phase
naime is moved to the RLD buffer. The size
of the common area is added to the phase
origin and the new phase origin is moved to
the RLD buffer. The address of the phase
entry in the control dictionary is obtained
with the FNDIDX subroutine.

Next, the high address of the phase
being processed is tested to determine if
it is the longest phase processed up to
this time. If it is, its address is saved
for comparison to later phases. The phase-
end address is then moved to the RLD
buffer, together with the information for
the phase entry from the control diction-
ary. Using the BUILDHDR and UPDATE subrou-
tines, the header containing the phase name
and transfer address is built, the RLID
buffer register is increased by 4, and a
branch to RLDRD is made to read the next
record on the RLD tape.

RLD FORMATTING (RLDFMT) CHART NG

Objectives:

1. Compute end of RLD record.

2. Test for valid ESD type.

3. Get relocation factor and assembled
origin for RLD.

Entry: From the Read RLD Tape routine
(RLDRD), Chart NC.

Method: After obtaining the number of RLD
records to be formatted and the number of
bytes in each record, this routine.sets the
pointer to the first byte of the record.

It picks up the number of bytes of informa-
tion in the record and adds to it the
address of the first R-pointer (points to
the relocation factor of the contents of
the load constant) in order to determine
the end-of-record.

It saves the R-pointer and P-pointer
(points to the relocation factor of the
control sections in which the load constant
occurs) and determines if this RLD is to be

Service Programs - Linkage Editor 85

ignored. If this RLD is to be ignored, the
pointer is moved to the next flag field
that indicates the type of constant. If
this entry has the same R- and P-pointer,
the pointer is moved to the next flag and a
check is made for end-of-record. If this
entry does not have the same R- and P-
pointer as the last entry, this routine
gets the address of the R-pointer for this
entry and branches to ENDTST to determine
if this is the end of information for this
record.

If this RLD is not to be ignored, the
routine saves the address of the assembled
origin byte and determines the address of
the entry in the control dictionary, using
the FNDIDX subroutine. It then determines
if this entry is a Label Reference (LR)
type of ESD. If it is, the routine checks
to see if it could be a phase entry. If it
could be a phase entry, an error is noted
and processing continues. If the LR-is not
a phase entry, this routine saves the]
assembled origin address and, using subrou-
tines ESDTST and GETRF, tests for valid ESD
types and gets the relocation factor from
the ESD and puts in a bucket. The routine
then branches to MOVRFAO to move the relo-
cation factor and assembled origin to the
RID buffer.

If the entry was not an LR, a test for
valid ESD types is performed using subrou-
tine ESDTST. The relocation factor is
obtained using subroutine GETRF. After
getting the assembled origin, a branch is
made to MOVRFAO to move the relocation
factor and assembled origin to the RLD
buffer.

MOVE R/F AND A/0O TO BUFFER (MOVRFAO)
CHART NK

Objectives: Move relocation factor and
assembled origin to RLD buffer.

Entry: From the RLD Formatting routine
(RIDFMT), Chart NG.
Method: This routine first moves the relo-

cation factor and the assembled origin of
the constant to the RLD buffer area. The
RLD buffer pointer is increased by eight,
and the P-pointer is analyzed. This rou-
tine then computes the address of the entry
in the control dictionary using subroutine
FNDIDX. It determines whether this is
either a Section Definition (SD) or Private
Code (PC) entry. If it is neither, an
error indicating an invalid control entry
from P-pointer is noted, and Pass 4 is
fetched to process the error. If the entry
is either an SD or PC, this routine, using
subroutine GETRF, gets the relocation fac-

86 IBM S/360 BOS System Control (16K Tape)

‘result as its relocated origin.

tor from the ESD and stores it in a bucket,
and then updates the pointer to the next
flag field on the record. A branch is then
made to RAO to process this flag, indicat-
ing the type of constant to be analyzed.

PROCESS FLAG (RAO) CHART NL

Objectives:

1. Get assembled origin of constant.

2. Compute relocated origin of constant.

3. Move flag and relocated origin of con-
stant to RLD buffer.

Entry: From the Move R/F and A/0 routine
({MOVRFAO), Chart NK.
Method: Having saved the flag indicating

the type of constant, this routine gets the
assembled origin of the constant, adds to
it its relocation factor, and stores the

It then
determines if the relocated origin of this
constant is greater than the relocated
origin of the last constant processed. If
it is not yreater, a bit is set in the
phase entry to indicate the RLD's in this
phase are nonsequential.

If the relocated origin of this constant
is greater than the last, it is saved for
comparison to the next constant to be pro-
cessed. The flag and relocated origin are
then moved to the RLD buffer, and the RLD
buffer pointer is increased by 4.

This routine then examines the next
field in the record. If this field has the
same R- and P-pointer as the last entry, a
branch to the beginning of this routine is
made to process the flag. If this field
does not have the same R- and P-pointer as
the last, a branch to ENDTST is performed
to check for end-of-record.

TEST FOR END-OF-RECORD (ENDTST) CHART NM

Objectives:
1. Test for end of information for this
record.

2. Test for last input record in storage.
3. Get starting address of new record.

Entry: From the RLD Formatting routine
(RLDFMT), Chart NG, and the Process Flag
routine (RAO), Chart NL.

Method: This routine determines if this is
the end of information for this input
record. If it is not the end of informa-
tion, a branch to RPOINT to process the
R-pointer is made. If it is the end of

information for this record, this routine
determines if it is the last RLD input
record in main storage at this time. If it
is the last record, a branch is made to
RLDRD to read the RLD's for another phase,
if required. If it is not the last record
in storage, this routine gets the beginning
address of the record just processed and
adds to it the number of bytes in the
record to get the starting address of the
next record in storage. It then branches
to NEWRCD to compute the end address for
this new record.

END OF RLD'S (ENDPH) CHART NN

Objectives:
1. save end address of longest phase in
storage.

2. Write RLD's of last phase on tape.
3. Rewind work and RLD tapes.
4. Set copy switch for Pass Uu.

Entry: From the Read RLD Tape routine
(RLDRD), Chart NC.

Method:, This routine first saves the end
address of the longest phase in storage and
then mpves the end-of-phase code to the RLD
buffer area. Using subroutine PRTHDR, it
prints the phase name and transfer address.
It determines if RLD records are to be
written on tape. If so, this routine
writes the RID's for the last phase on
SYS001 and checks for EOF. It then writes
a tapemark on the work tape (SYS001) and
rewinds the tape. If the TXT and RLD's are
on the same tape, this routine fetches the
second coreload for Pass 3. If the TXT and
RLD®*s are not on the same tape, the copy
switch for Pass 4 is turned on, the RLD
tape (5YS002) is rewound, and the second
coreload for Pass 3 is fetched.

If RLD's are not to be written on tape,
this routine branches to TMWORK to write a
tapemark on SYS001, and continues process-
ing as just described.

SUBROUTINEs FOR PASS 3, CORELOAD 1

MOVWRK: Loads the address of the CCB for
the work tape, and requests an 1/0
operation to write on SYS001.

MOVRID: ILoads the address of the CCB for
the RLD tape, and requests an I/0O oper-
ation to read from SYS002.

FNDIDX: Subtracts the root number from the
phase number, and multiplies the con-

trol dictionary number by 8 to get the
displacement. It then loads the 2's
complement of the displacement into a
register and adds the negative dis-
placement to the end address of the
control dictionary to get the address
of the control dictionary entry
desired.

GETRF (Chart NJ): Moves the relocation
factor of the constant to a bucket. It
then determines if the sign of the
relocation factor is plus. If it is
plus, the subroutine branches back to
the main routine via LINKRG. If the
sign of the relocation factor is nega-
tive, the 2's complement of the reloca-
tion factor is stored in the bucket,
and the subroutine branches back to the
main routine via LINKRG.

UPDATE: Increases the RLD buffer pointer
by four, and determines if the buffer
is full. If it is full, an error indi-
cating that the buffer was full when
not expected is noted, and Pass 4 is
fetched to process the error. If the
buffer was not full, this routine
branches back to the main routine via
LINKRG.

ESDTST (Chart NH): Determines if this

entry is an SD or PC entry. If it is

an SD or PC entry, the subroutine
branches to the main routine via

LINKRG. If it is not an SD or PC

entry, the subroutine determines if the

ESD number is valid. If the ESD number

is invalid, the total number of unre-

solved address constants is increased
by 1, and a branch to main routine is
made via LINKRG.

If the ESD number is valid, the
subroutine determines if it is a Common
(CM) entry. If it is not, the error
count is increased by 1, the total
number of unresolved address constants
is stored, and a branch to the main
routine is made via LINKRG. If it is a
CM entry, the length of the assembled
origin field is zeroed, and a branch to
the main routine is made via LINKRG.

BUILDHDR (Chart NF): Moves phase name to
print area, and transfer address to
output area. It saves registers 2-7
and gets the address of the print and
output work areas. The subroutine then
gets an 8-byte character from the out-
put area and the address of the print
character from the hexadecimal conver-
sion table (TABLE). It converts half
of a character at a time and moves it
to the print area. After all the char-
acters have been converted and moved to
the print area, the subroutine restores

Service Programs - Linkage Editor 87

register 2-7 and returns to the main
routine via LINKRG.

PRTHDR (Chart NE): Determines if MAP has
been requested. If MAP has not been
requested, the subroutine branches to
the main routine via LINKRG. If MAP
was requested, it assumes SYSLST is a
printer and sets the command code for
printer and ASA code accordingly. At
this time, the assignment for SYSLST is
checked. If SYSLST is a tape, the CCW
is set for tape write. The line count
is decreased by one. If the line count
is zero, it is reset, and a command to
write and skip to channel 1 is issued.
If SYSLST is a tape, the ASA code is
set to skip to channel 1, and the CCW
is set for tape write. 1If the line
count is not zero, the line count is
stored, the phase name and transfer
address are printed, and SYSLST is
checked for EOF. If EOF occurs, Pass U4
is fetched to process the error. If
EOF does not occur, the subroutine
branches to the main routine via
LINKRG.

Error Message Routines: If an error occurs
during Pass 3, Coreload 1, the proper
error code is stored in register 2, and
Pass 4 is fetched to process the error.

PASS 3-CORELOAD 2

INITIALIZATION (START) CHARTS PA-PC

Objectives:

1. Change assignments for TXT and work
tapes if necessary.

2. Read RLD's from SYS001.

3. Write header for phase entry.

4. Read a text block.

5. Insert address constant in text.

Entry: From Pass 3, Coreload 1

Method: After storing the address of the

RLD buffer from Pass 3, Coreload 1, this

routine determines if the compressed RLD's

are on tape. If the RLD's are on tape, a

skip to the first tapemark on SYS001 is

made. If the RLD's are not on tape, it is

assumed that all the RLD's for the phases

processed in Pass 1 could fit into main

storage at one time and that Pass 3, Core-

load 1, after formatting the RLD's, kept

them in compressed format in storage.

This routine next determines if the
assignments for the text and work tapes
need to be changed. 1If they do, it changes
the work tape assignment for SYS000 to
S5YS002, and the text tape assignment for

88 IBM S/360 BOS System Control (16K Tape)

SYS002 to SYS000. The routine then posi-
tions the two tape files, stores the
address of the TXT buffer in the TXT CCW,
and stores the size of the TXT block in the
work tape CCW. It adds two to the text
block size to allow for the phase number
and stores the result in the TXT CCW . It
sets the RLD, buffer register to point to
the start of the phase, and determines if
it is the end-of-phase processing. If it
is, the routine branches to ENDPHA to fetch
Pass 4.

If it is not the end-of-phase proces-
sing, it again determines if the compressed
RLD's are on tape. If they are not, the
routine branches to NEWPHA to set up the
phase header. If the RLD's are on tape, it
reads the RLD's from SYS001l and tests for
EOF. If EOF is reached, Pass 4 is fetched
to process the error. If it is not EOF,
the last-block switch is turned off and the
phase name, origin, end address, and entry
point for the RLD are moved to the header.
It then moves to the header the highest
address of the longest phase, the size of
the text blocks, the number of blocks, and
the number of bytes in the last block.

The routine stores the phase number,
determines if the RLD's are sequential, and
sets the appropriate switch to indicate
their status. It writes the header, using
the WRTHDR subroutine, and sets the pointer
to the first RLD in the buffer. This rou-
tine then determines if all the RLD's for
one phase have been read. If all the RLD's
for one phase have been read, a switch is
set to show no more RLD's, and processing
continues. If all the RLD's for one phase
have not been read, this routine reads a
text block and gets the new low address of
text in storage.

It determines if the phase number for
the text block and the phase number in the
header agree. If they do not, this routine
fetches Pass 4 to process the error. If
they do agree, a check for the last block
of the phase is made. If it is not the
last block of the phase, the routine gets
the new high address of the text in storage
by adding the text block size to the text
end address, and branches to CONTST to
determine if an address constant from a
previous text block is to be inserted in
this text block.

If it is the last text block of a phase,
a switch indicating the last block of the
phase is set, and a text is made to deter-
mine how many bytes of text are to be writ-
ten on tape. If there are 61 bytes or less
of text to be written, the byte count in
the work tape CCW is set to 122, a switch
to double text is set, and a branch to
COMPNT is made to get the new high address
of the text in storage. If there are more

than 61 bytes of text to be written, this
routine moves the number of bytes in the
last block to the CCW for the work tape,
and gets the new high address of the text
in storage by adding the number of bytes in
the last text block for this phase to the
text end address plus one. The routine
then branches to CONTST to determine if an
address constant from a previous text block
is to be inserted.

If no address constant from a previous
text block needs to be inserted in this
text block, this routine branches to RLDTST
to match the RLD to the text block in which
it belongs. If an address constant is to
be inserted into this text block, it is
moved into the text block, and a branch to
RLDTST is made.

MATCH RLD TO TXT (RLDTST) CHART PD

Objectives:

1. Save relocation factor, assembled ori-
gin, and address of the R- and P-
pointers for this RLD.

2. Save relocated origin of RID.

3. Determine if RLD is within current
rhase and within text block.

Entry: From Initialization routine for
Pass 3, Coreload 2 (START), Chart PA.

Method: This routine first determines if
there are more RLD's to be processed for
this phase. I1f there are no more RLD's to
be processed, this routine branches to
DOBBLK to determine if the text block is to
be doubled. If there are more RLD's to be
processed, the relocation factor, assembled
origin, and address of the R- and P-
pointers for this RLD are saved, the RLD
buffer register is updated by 8 to point to
the relocated origin of the RLD, and a test
is made to determine if this RLD is to be
ignored.

If this RLD is to be ignored, a branch
is made to UPDATE to point to the next RLD.
If this RLD is not to be ignored, the
address of the relocated origin is saved,
and a test is made to determine if the RLD
is in the current phase. If the RLD is not
in current phase, one is added to the count
for RLD items not within the phase, an
indicator is set to ignore the RLD in
error, and the routine branches to UPDATE
to get the next RID.

If the RLD is in the current phase, this
routine determines if the relocated origin
is less than the starting address of this
text block. If it is, a branch to UPDATE
is made to point to the next RLD. If the
relocated origin is higher than the start-

ing address of this text block, the routine
determines if it is greater than the end
address of this text block. If it is not,
a branch to SUBSTI is made to relocate the
constant. If it is greater than the end
address of this text block, this routine
determines if the RLD's are sequential. If
they are not, a branch to UPDATE is made to
point to the next RLD. If the RLD's are
sequential, a branch to TXTWRT is made to
write the text block on tape.

RELOCATE CONSTANT (SUBSTI) CHART PE

Objectives:

1. Get relocated address of constant.

2. Determine end address of constant.

3. Place relocated constant in text block.

Entry: From the Match RLD to TXT routine
(RLDTST), Chart PD.

Method: This routine computes the relocat-
ed address of the constant by first sub-
tracting the starting address of the RLD
buffer from the low address of text in
storage, and then subtracting the resulting
displacement plus two (to eliminate the
header) from the relocated origin of the
constant.

It then gets the end address of the
constant by adding the length of the con-
stant to the address of the constant. It
determines if the end address of the con-
stant is in storage. If it is not, a
branch to EXTREAD is made to read the first
six bytes of the next text block into stor-
age.

If the end address is in storage, this
routine loads the relocation factor of the
constant into RFBUCK, and determines if
this is an ER (External Reference) type
constant. If it is not an ER type con-
stant, the relocation factor is added to
the assembled origin, the result is stored
in the RFBUCK bucket, and the routine
branches to TESTSUB. If this was an ER
type constant, this routine branches to
TESTSUB to determine if the contents of the
RFBUCK bucket should be subtracted from the
constant. If the contents of RFBUCK is not
to be subtracted from the constant, it is
added to constant, and the relocated con-
stant is placed in the text block.

If the entire constant cannot fit in the
text block, that part of the constant to be
inserted into the first six bytes of the
next block is saved, and the routine
branches to UPDATE. If the entire constant
fits into the text block, the routine
branches immediately to UPDATE to point to
the next RLD item.

Service Programs - Linkage Editor 89

EXTRA READ (EXTREAD) CHART PF

Objective:
1. Read first six bytes of next text
block.

2. Move remaining bytes of constant from
previous text block to first bytes of
next text block.

Entry: From the Relocate Constant routine
(SUBSTI), Chart PE.
Method: This routine determines if a con-

stant is to be placed in the first bytes of
the next text block to be read into stor-
age. If there is no need to read the next
text block at this time, the routine
branches to PULLOUT to insert the constant
into a register (TENPRG)

If the constant needs to be placed in
the next text block, this routine reads six
bytes of the next text block into storage,
turns on the constant-saved switch, and
tests for EOF. If EOF is reached on the
text tape, Pass U4 is fetched to process the
error. If EOF is not reached, the record
is backspaced, and the constant is moved
over the phase number that is contained in
the first two bytes of the record. The
extra-read CCW is restored to read, and the
routine branches to PULLOUT to insert the
constant in the text block.

GET NEXT RLD (UPDATE) CHART PG

Objectives:
1. Point to next RLD.
2. Write text blocks for phase on tape.

Entry: From the Match RLD to TXT routine
(RIDTST), Chart PD, and the Relocate Con-
stant routine (SUBSTI), Chart PE.

Method: This routine increases the RLD
register by four to point to the next RLD,
and determines if this RLD has the same
relocation factor and assembled origin as
the last. If it does, a branch to RIGRLD
is made to determine if this RLD is to be
ignored. If this RLD has a different relo-
cation factor and assembled origin than the
last, this routine determines if this is
the end of the phase.

If it is not the end of the phase, a
branch to NEWRP is made to save the reloca-
tion factor and assembled origin of this
RLD. If it is the end of the phase, this
routine determines if the RLD's are sequen-
tial. If they are sequential, the
end-of -RLD's switch is turned on and a
branch to DOBBLK is made. If the RLD's are
not sequential, a test is made to see if
the last text block is to be doubled.

90 IBM S/360 BOS System Control (16K Tape)

MOVWRK :

MOVRLD:

If the last text block is not to be
doubled, a branch to TXTWRT is made to
write the text blocks on the work tape. If
the last text block is to be doubled, the
double-text switch is turned off, the last
text block is doubled, and the text blocks
for the phase are written on tape.

This routiné then determines if all the
text blocks for the phase have been read.
If they have, it branches to GETRLD to read
the RLD's for the next phase. If all the
blocks for one phase have not been read,
the routine determines if all the RLD's
have been processed.

If all the RLD's have been processed, a
branch to RDTXT is made to read a text
block from tape. If all the RLD's have not
been processed, the routine determines if
the RLD's are sequential. If they are
sequential, this routine gets the address
of the last R- and P-pointer processed, and
branches to RDTXT to read the next text
block. 1If the RLD's are not sequential,
this routine sets the pointer to the begin-
ning of the RLD's and branches to RDTXT.

END OF PROCESSING (ENDPHA) CHART PH

Objectives:

1. Backspace text file.
2. Rewind RLD tape.

3. Fetch Pass 4.

Entry: From the Initialization routine for
Pass 3, Coreload 2 (START), Chart PA.

Method: After writing a tapemark on the
work tape, this routine backspaces the text
file and rewinds SYS001, the RLD tape. If
it is not necessary to copy the work tape
onto SYS000, this routine fetches Pass U4 to
process any errors that may have occurred
during linkage-editing. If it is necessary
to copy the work tape onto SYS000, this
routine backspaces the file on the work
tape, positions SYS000 for copy, and fetch-
es Pass 4 to copy tape and process any
errors that occurred during linkage-
editing.

SUBROUTINES FOR PASS 3, CORELOAD 2

Loads the address of the CCB for
the work tape, and requests an I/O
operation to write on tape.

Loads the address of the CCB for
the RLD tape, and requests an I/0
operation to read from SYS001.

MOVTXT: Loads the address of the CCB for
the TXT tape, and requests an I/0 oper-
ation to read from tape.

WRTHDR: Loads the address of the header
CCW, and requests an I/0 operation to
write header on work tape.

NOTIN: Adds one to the counter for RLD
items outside of phase limits, and sets
the first bit in the flag field to
ignore the RLD. The subroutine then
branches to UPDATE to point to the next
RLD.

Error Message Routines: If an error occurs
during Pass 3, Coreload 2, the proper
error code is stored in register 2, and
Pass 4 is fetched to process the error.

PASS 4

LINKAGE EDITOR (S$LINKEDTL) CHART QA

Objectives:
1. To copy Linkage Editor output to SYS000
if it was on SY¥S002 and go to Job Con-

trol for EOJ.
2. To cancel Linkage Editor if an abort
error occurs.

Entry: Fetched by Pass 3 for normal EOJ.
Fetched by Pass 1, Pass 2, or Pass 3 when
an abort error occurs.

Method: If register 2 does not indicate

that Pass 4 was fetched to cancel the job,

Pass 4 insures that the final Linkage Edi-

tor output is on SYS000. If a Linkage

Editor MAP was requested, messages are

printed on SYSLST if there are:

1. Any unresolved RLD's.

2. Any TXT or REP outside the limits of a
phase.

3. Any RLD's outside the limits of a
phase.

Pass 4 then fetches Job Control for normal

end-of-job processing.

If Pass 4 was fetched to cancel Linkage
Editor or if end-of-reel is reached on
SYS000, the message, LINKAGE EDITOR CANNOT
CONTINUE, is printed on SYSLOG. This mes-
sage is also printed on SYSLST if a MAP has
been requested. A supervisor call of 6 is
issued and Linkage Editor is canceled.

Service Programs - Linkage Editor 91

LIBRARIAN

The Librarian is a series of programs that
maintain and service the three libraries:
Core Image, Relocatable, and Source State-
ment, that make up the 16K Tape System
Residence (see System Residence and Figure
2).

The Librarian consists of four programs;
MAINT, DSERV, RSERV, and SSERV. MAINT
catalogs and deletes elements of the
libraries or copies the libraries from one
unit to another. DSERV displays the names
of the elements of each library. RESERV
displays and punches modules from the relo-
catable library. SSERV displays and punch-
es books from the source statement library.

Programming
Language N
Tnput ~

Source
Statement
Library

Language
Translator
Linkage
Editor
Core
Image
- Library
-
- -~
”
Execution e
Figure 46. System Flow and System Librar-

ies

LIBRARY FORMAT

Figure 46 shows the relationship of the
libraries to the system. Programmer input
to the language translators can be stored

92 IBM S/360 BOS System Control (16K Tape)

in the source statement library in elements
called books. Output modules from the
language translators can be stored in the
relocatable library. Phases from the link-
age editor can be stored in the core image
library.

The elements of each library are
arranged by name in collating sequence.
After the Supervisor and after each 1li-
brary, directory, and sublibrary there is a
tapemark. After the libraries there is a
26-byte trailer record beginning with
$BOSSEOV and followed by a tapemark.

If the relocatable library or the source
statement library is an independent tape,
it is preceded by header records and a
tapemark, and followed by a trailer label
identical to the one on SYSRES and a tape-
mark. The header records consist of:

1. A VOL1 label.)
2. A header in the form "HDR PRIVATE LIB--

R or s".

SOURCE STATEMENT LIBRARY

Figure 47 shows the format of the source
statement library. This library is divided
into two sublibraries, Assembler and COBOL.
Preceding the sublibraries is a directory.
The source statement library is the only
library with a directory.

The directory begins and ends with a
directory label in the following format.

r T 1
| byte 0 IS |
F t {
| bytes 1-2 |number of records in direc- |
| |tory |
F + !
| bytes 3-10 |dummy name (zero‘’s in head- |
| |er; one's in trailer) |
I t !
| byte 11 | reserved |
1 1 J
1 3 T 1
|byte 12 |dummy compression code '8F' |
L i 4
1 3 T 1
|bytes 13-20 |directory name DIRS BKS |
L 1 1
L} T A
|bytes 21-26 |dummy compression code |
| | * OFOFOFC00000°* |
b t {
| bytes 27-171|not used |
L L J

N

Each directory record has the following
format.

[T 1
|byte 0 |S |
F t 4
|bytes 1-2 | record number within direc- |
| | tory |
b 1]
|bytes 3-10 |sublibrary name (ASSEMBLY or|
] | COBOL) |
1 4 4
1 3 T 1
| byte 11 | reserved

1 4 d
1] T b
| bytes 12-21 |bookname of entry in librar-|
| |y; last two bytes reserved |
L N ¥ |
|] L) 1
|bytes 22-171|up to 15 additional book- |
| | names |
L L J

Each sublibrary begins and ends with a
sublibrary label in the following format.

Core Image Library or Relocatable Library
| orIndependent Tape Headers for SYSSLB / Tapemark

Directory Header Label]

L ASSEMBLY Directory Records /

COBOL Directory Records

Directory Trailer Label Tapemark

Sublibrary Header Label
for ASSEMBLY

Bookname 1 Record 1 \

Bookname 1 Record 2

\
\ \
A A
1 A
\ Bookname 1 Record i ‘\
\ \
) i

1) T 1
| byte 0 |s |

b $ -] Bookname 2 Record 1

| bytes 1-2 | record number within the |

| | sublibrary |

b + -]

|bytes 3-10 |dummy bookname (zero's in]

) | header; one's on trailer) | Bookname n Record m

t EN 4

3 1)

| byte 11 | reserved | Sublibrary Trailer Label

F + i for ASSEMBLY Tapemark
|byte 12 |dummy compression code '8F' |

; + - 1 Sublibrary Header Label

| bytes 13-20 |sublibrary name (ASSEMBLY or| for COBOL

| | COBOL) |

t + i Bookname 1 Record 1 7

|bytes 21-26 |dummy compression code] -

| | *OFOFOFC00000* | Bookname 1 Record 2

L L 4

Within the sublibrary, each data record

has the following format.

r T 1
|byte 0 Is |
b t :
| bytes 1-2 | record number within the 1
| |sublibrary |
t + 4
|bytes 3-10 |bookname |
- t 4
| byte 11 | reserved |
¥ + 1
| bytes 12-171|compressed card images |
L L 4

Each card is compressed by deleting the
blanks following the nonblank characters.
Control bytes within the record indicate
deleted blanks. The first four bits of a
control byte indicate the number of non-
blanks that follow. The second four bits
indicate the number of deleted blanks.

Each control byte can account for a maximum
of 16 nonblanks followed by a maximum of 16
blanks.

/
f
L
T
.

— L

Bookname 1 Record |

Bookname 2 Record 1

T T
\ Bookname u Record v \

Sublibrary Trailer Label
for COBOL Tapemark .

\ $BOS $EOV...... \

\ A

\ N

Tapemark

Figure 47. Source Statement Library

Service Programs - Librarian 93

RELOCATABLE LIBRARY

Figure 48 shows the format of the relocat-
able library. This library is made up of
module records from the language transla-
tors. Each module is preceded by a module
directory record.

ytes 0-1 RO

o

ol o

ytes 2-3 |number of records between
|this record and the last tape

|mark
[

bytes u4-5 Tnumber of records in this
|module plus one
il

e S B St
N o T U

bytes 6-13 ;module name
L

Each module record is preceded by a
two-byte count. The first byte gives the
number of logical records in the module
record. The second byte gives the number
of bytes in a logical record. :

94 IBM S/360 BOS System Control (16K Tape)

Core Image Library or
Independent Tape
Headers for SYSRLB

\ \ Tapemark
\ Module 1 Directory Record \
§ Module 1 Record 1 \
\ Module 1 Record 2 \
Module 1 Record i
Module 2 Directory Record
Module 2 Record 1
/ Module n Record m /
[| Tapemark

Source Statement Library
or Library Trailer Record

$BOSS$EOV........and
a Tapemark
Figure 48. Relocatable Library

CORE IMAGE LIBRARY

Figure 49 shows the format of the core

image library.

This library is made up of

phase blocks from the Linkage Editor.
Phases are named in such a way that they
are grouped in the library by program. The
first four characters of a phase name are
identical for each phase in a program. The
last four characters identify the phase.
System programs are named so that they will
appear at the beginning of the library.

1. Initial IPL phases are $3ASIPL1 and 2
2. Supervisor is $$A$SUP

3. Type-A transients are $5AXXXXX

4. Type-B transients are $$BXXXXX

5. Job Control,

IPL, and Linkage Editor

phase names are prefixed by a §.

Each phase is preceded by 61-byte phase

header.

The first byte in the header is a

C. The next 30 bytes are the header for

the following phase.

The last 30 bytes are

the header for the previous phase.

The first header record contains a zero

in byte 31.

The last record in the library
contains a zero in byte 1.

Each phase

header is in the following format.

r T
|bytes 1-8
L

+

|phase name

3 T
|bytes 9-12 |starting address
L kR

[] 1]
|bytes 13-16|ending address
L l

1 4 T
|bytes 17-20|transfer address
i 4

-

T
r
1]
7]

T

21-24|highest address of all phases
|]in a program
i

+
bytes 25-26|number of bytes in a phase
|block
1

4

T
bytes 27-28|number of phase blocks in the
| phase

e e Bl e

1]

bytes 29-30|number of bytes in last
| record
L

[SRS VS WA OSSN VI GHpI VI WA——

[$$SASIPLT Record

F $$ASIPL2 Record

C | Supervisor Header | 00 == ~=~=--

$$AS$SUP Records

Supervisor Header \

—_\+<— Tapemark

\C Phase 1 Header 00-======

=\

Phase 1 Records

\

Phase 2 Header

Phase 1 Header

Phase 2 Records

\
\

C | Phase 3 Header

Phase 2 Header

Phase 3 Records

/C Phase n Header

Phase n-1 Header

T

/ Phase n Records

/

Phase n Header

J—— Tapemark

Relocatable Library or Source Statement

Library or Library Trailer Record

BOSEOV...cceee.... and a Tapemark

Figure 49.

Core Image Library

Service Programs - Librarian 95

LIBRARIAN MAINTENANCE - MAINT

MAINT catalogs and deletes elements of the

three libraries or copies the libraries

from one unit to another. Job Control

calls MAINT when it reads a:

1. // EXEC MAINT control card.

2. /& control card after reading // OPTION
CATAL control card.

In the latter case, the information that

has been linkage-edited onto SYS000 during

the job is to be cataloged into the core

image library at end-of-job.

In the former case, not only will Lin-
kage Editor output be cataloged on the
CATAL option, but also Librarian control
cards will be read and processed to copy,
catalog to, or delete from the libraries:

e COPY CL or RL or SL.

e CATALR or CATALS.

¢ DELETC or DELETR or DELETS.
Librarian control cards must be given in
the same order as the libraries and their
elements are defined.

Figure 51 shows the program flow of
MAINT. MAINT has two phase overlays (see
Figure 50): MAINTR for relocatable library
functions; MAINTS for source statement
library functions. The section of MAINT
that processes core image library functions
is labeled MAINTC. Figure 52 shows the 1I/0
flow of MAINT and of each of the library
pProcessors.

96 IBM S/360 BOS System Control (16K Tape)

Read Librarian
Control Cards

EQJ - Write Last Record

Error Message

Find Library

Execute Channel Program

Copy Complete Library

Analysis to Fetch Phases

MAINTC MAINTR MAINTS
Overlay Overlay
MAINT MAINTR MAINTS
Figure 50. Librarian Maintenance Core

Allocation

S~

Comnr)
®7

MAINT

ENTMAI [sA

Read Librarian
Control Cards

ANALEN SL

Analyze and
Get Phase

Determine
Function

¢ Core Image Relocatable Source Statement "
oPY Function Function Function /
cory [sE MAINTC | 5@ MAINTS | TA MAINTR | uaA WRTEOV | SE
Copy Complete Catalog and Catalog and Catalog and Write Trailer
Library Delete Delete Delete Record ofter
. Libraries

Figqure 51.

Librarian Maintenance Program Flow

Service Programs ~ Librarian

Job Control)

97

[SYSRDR

Librarian
Control

Programmer
Messages

Cards

MAINT
Operator
Messages SYSLOG
Old Core
Image
Library New Core :
Image
Library
MAINTC SYS002
SYS001
Old Relocatable Module Work
Library Records Tape
MAINTR
SYSIPT New
Language Translator R?I°°°*°ble
Modules and Library
Control Cards
Old Source
Statement Input
Library Records
MAINTS

=

Source Statements

Figure 52. Librarian Maintenance I/0 Flow

98 IBM S/360 BOS System Control (16K Tape)

New Source
Statement
Library

—

Bit 0 1 2 3 4 5 6 7

Byte X'so" X'40' X'20' X'10' X'08! X'04' X'02' Xx'or'
CORBYT SLCORE RLCORE CLCORE
CPYBYT CPYSL CPYRL CPYCL
CRDBYT NUVBIT ENDBIT CELBIT CATBIT
EOVBYT SLEOV RLEOV CLEOV
MNTBYT SKIPI PRVTPE DELCL

TESBYT FRSTCD

TAPBYT SLBMSK RLBMSK

Figure S53. . MAINT Switches

Supervisor Communications Region Switches

MAINT uses the communications region to
determine if there is any Linkage Editor
output which must be cataloged. Bits two
and three of the linkage-control byte
(JBCSW1), displacement 57, contain this
information. Bit three informs MAINT that
any Linkage Editor output must be catal-
oged.

MAINTC then checks bit two to see if
there was any Linkage Editor output. Bit
three is turned on if a //0OPTION CATAL card
is read. This bit is turned off if:

1. MAINT is executed successfully.
2. The abnormal end-of-job cancel routine
is fetched.

MAINT Switches

Figure 53 shows the switch bytes initial-
ized by MAINT.

CORBYT: Used by the Analysis to Fetch
Phases routine. The flags are turned
on as the phases are loaded into stor-
age.

CPYBYT: Used by the Read Librarian Control
Cards routine. The flags are turned on
according to the operands on the COPY
control card. 1In the absence of a COPY
control card and a NEWVOL control card,
all three flags are turned on. The
Analysis to Fetch Phases routine then

determines whether or not a library
must be copied.

CRDBYT: Used by the Read Librarian Control
Cards routine. The flags are turned on
depending on the operation code: NUVBIT
for a NEWVOL card, ENDBIT for /#*, DEL-
BIT for a DELET card, and CATBIT for a
CATAL card.

EOVBYT: Used by the Analysis to Fetch
Phases routine. The flags are turned
on as the end of each library is
reached.

MNTBYT: DELCL is turned on by the Analysis
to Fetch Phases routine if a DELETC
card is read. PRVTPE is turned on by
the Analysis to Fetch Phases routine
either if SYSRLB or SYSSIB is assigned,
or if a NEWVOL card has been read.
SKIPI is used by MAINTS to skip a book
and not catalog it to the source state-
ment library.

TESBYT: FRSTCD is used by the Read
Librarian Control cCards routine to
determine if the card being read is the
first card.

TAPBYT: Used by the First-Card routine.
RLBMSK is turned on if SYSRLB is
assigned. SLBMSK is turned on if
SYSSLB is assigned.

Service Programs - Librarian 99

READ LIBRARIAN CONTROL CARDS
CHARTS SA TO SD

Objective: To read librarian control cards
from SYSRDR to SYSIPT, and to analyze the
operation code and operands of the control
cards.

Entries:
1. From Job Control when a // EXEC MAINT
card is read.

2. From MAINTC, MAINTR, and MAINTS to
ENTMAI for another control card oper-
and.

3. From MAINTS to:

¢ EMAINS on reading & librarian con-
trol card.
* AEND on reading a /% card.
Method: This routine is the first to be

executed when the control card // EXEC
MAINT is read by Job Control. The librar-
ian control cards are read from SYSRDR or
SYSIPT and printed on SYSLST. The opera-
tion code is analyzed as:
e /% to indicate the end of librarian
control cards.
CATAL to catalog a library.
DELET to delete a library.
NEWVOL to define a new library.
COPY to copy one or more complete
libraries.
IPTCTRL to read librarian control
from SYSIPT.
e RDRCTRL to read librarian control cards
from SYSRDR. :

e 0 00

cards

When a /* card is read the routine
branches to the Analysis~-to-Fetch-Phases
routine at OPREN, or to MAINTS, depending
¢t which routine is in storage.

When a CATAL or a DELET card is read:

1. The catalog or delete switch is set.
2. The operation code suffix is checked to
see which library is to be updated.
The routine branches to the
Analysis-to-Fetch-Phases routine at
OPRCL, OPRRL, or OPRSL to load the
proper phase.

The Analysis-to-Fetch-Phases routine
returns to SCANFS to get the first
operand.

The routine branches to the catalog or
the delete entry of MAINTC, MAINTR, or
MAINTS to update the library.

These three routines return to ENTMAI
for the next operand. When all
operands of the control card have been
processed, another control card is
read.

3.

When a NEWVOL card is read:

1. The card is an error if it is not the
first librarian control card.

2. The new volume switch is set.

3. The routine reads another control card.

i00 IBM S/360 BOS System Control (16K Tape)

When a COPY card is read:
1. The card is an error if it is not the
first librarian control card.

2. The operands are checked to see which
libraries are to be copied.
3. The routine reads another control card.

When an IPTCTRL or an RDRCTRL card is
read, the symbolic unit name in the DTF for
control-card input is altered to SYSIPT or
SYSRDR.

The scan subroutines (Chart SD) extract
the operation code and operands from the
control card.

e INITAl extracts the operation code.
» FRSTCH extracts the first operand.
» NXTOPR extracts the .remaining operands.

EOJ (WRITE LAST RECORD) CHART SE

Objective: To write the end-of-volume
label on SYS002 and return to Job Control.

Entry: From the Analysis-to-Fetch-Phases
routine or from MAINTS when all maintenance
functions are complete.

Method: This routine writes the end of
volume label $BOSS$EOV on SYS002 after the
requested librarian maintenance functions
are completed. A tapemark is written after
the EOV label, and tapes used by MAINT are
rewound. Control is given to Job Control
by an SVC 14.

ERROR MESSAGE SUBROUTINE CHART SF

Objective: To print error messages on
SYSLOG and SYSLST.

Method: This routine gets the address and
length of the error message to set up the
CCW. There are three types of messages:

» Information messages

e Decision messages

» Action messages

If it is an information type, the mes-
sage is printed on SYSLST and the routine
returns to the link register address.

If it is a decision type, the message is
printed on SYSLST. If SYSLST and SYSLOG
are different devices, the last control
card read and the message are printed on
SYSLOG. If SYSLOG is assigned as a 1052,
the user has an option to ignore the mes-
sage or cancel the job.

If it is an action type, the message is
printed as for a decision type but no con-
trol card is written on SYSLOG.

FIND LIBRARY SUBROUTINE CHART SG

Objective: To find the beginning of the
library to be processed and, if necessary,
to open the output tape SYS002.

Method: If a new library is being built on
SYS002, the NEWVOL switch is on and this
routine does not locate the old library.
control skips immediately to OPN2SW to open
SYS002 if necessary.

To locate the old library, this routine
determines if it is on SYSRES or a private
tape, SYSRLB or SYSSLB. If on SYSRES and
the library to be found is the core image
library, SYSRES is rewound. If on a pri-
vate tape, the private tape is opened.

A search is made on SYSRES or the pri-
vate tape for the library. The byte LIBNMG
contains an indicator for the library to be
found (C or R or S). The byte RESLBP con-
tains an indicator for the last library
found by SKIPTO (0 for no library found, C
or R or S, $§ for the end of the library
tape found).

The routine tests whether the last
library found is the right one. If not, it
skips to the next tapemark and reads the
next header. When the right library is
found, the routine positions the tape back
to the header. For SYSRES a count is kept
of the number of tape marks preceding the
library. The count of the number of
records read in the library is set to zero.

Finally, at OPN2SW, SYS002 is opened if
necessary. cControl returns to the
Analysis-to-Fetch~Pﬁ3ses'routine.

EXECUTE CHANNEL PROGRAM SUBROUTINE
CHARTS SH AND SJ

Objective: To reposition SYSRES if it has
moved and to execute the requested channel
program.

Method: If the entry point is EXCP, set a
switch to wait after executing the channel
program. If the logical unit determined by
the Find Library routine is SYSRLB or
SYSSIB, execute the channel program.

If the logical unit is SYSRES, test to
see if the SYSRES tape has been moved by a
fetch. If SYSRES has moved, reposition the
tape using the tapemark count and record
count. Then execute the channel program.
Wait if the switch has been set. Reset the
switch and return to the calling routine.

The tapemark count and record mark count
must be updated after each execution of
this routine.

COPY COMPLETE LIBRARY CHART SK

Objectives: To copy complete relocatable
library from SYSRES or SYSRLB to SYS002, or
to copy complete source statement library
from SYSRES or SYSSLB to SYS002.

Entries: From the Analysis-to-Fetch-Phases
routine to CPYARL to copy relocatable
library, or to CPYASL to copy source state-
ment library.

Method: The routine uses SKIPTO to find
the start of the library to be copied.
complete library is copied to SYS002.
the end of the library is reached, the
routine returns to ANALEN in the
Analysis-to-Fetch-Phases routine.

The
When

ANALYSIS TO FETCH PHASES CHARTS SL TO SP

Objective: To determine if MAINTR or
MAINTS has been fetched, and to fetch
MAINTR or MAINTS if necessary.

Entries:

1. From the Read-Librarian-Control-Cards
routine to:

e OPRCL if the operation code has a
C-suffix.

» OPRRL if the operation code has an
R-suffix. .

° OPRSL if the operation code has an
S-suffix.

o OPREN if a /* card is read and
MAINTS is not in storage.

o OPREN if MAINT was fetched by a /&
Job Control card.

2. From MAINTC, MAINTR, and
Copy-Complete-Library routines to
ANALEN when library updating is com-
plete.

Method: When more than one library is
being updated in a single librarian run,
the libraries must be modified in sequence:
1. Core image library

2. Relocatable library

3. Source statement library.

The relocatable library and the source
statement library cannot be on the same
private tape. SYSRLB and SYSSLB cannot be
assigned the same tape unit.

Service Programs -~ Librarian 101

OPRCL

1f the control card concerns the core image

library:

1. Check that MAINTR or MAINTS has not
overlaid MAINTC.

2. Branch to SCANFS for the first operand.

OPRRL

If the control card concerns the relocat-
able library:

1. Set ANALEN switch to branch to OPRRL.
2. Check that MAINTS is not in storage.

3. Finish processing core image library.
4. Fetch MAINTR if it is not in storage.
5. Branch to SCANFS for the first operand.

OPRSL

If the control card concerns the source
statement library:

1. Set ANALEN switch to branch to OPRSL.
2. Finish processing other libraries.

3. Fetch MAINTS if it is not in storage.
4. Branch to SCANFS for the first operand.

OPREN

If a /7% card is read:

1. Set ANALEN switch to branch to OPREN.

2. Finish processing all libraries.

3. Branch to EOJ (Write-Last-Record) rou-
tine.

The Analysis-to-Fetch-Phases routine has
the following exits:

e NEWRD to read next control card when a

control card in error is being ignored.

e SCANFS to extract the first operand.

e MAINTC to copy the core image library.

e CPYARL to copy the relocatable library.

® CPYASL to copy the source statement
library.

* MAINTC+8 to finish updating core image
library.

e MAINTR+8 to finish updating relocatable
library.

e WRTEOV to write EOV label and return to
Job Control.

e OPN2SW to open SYS002.

¢ SKIPTO to find the beginning of a
library.

102 IBM S/360 BOS System Control (16K Tape)

MAINTC CHARTS SQ TO SS

Objectives: .
1. To catalog phases in the core image
library.

2. To delete phases or programs from the
core image library.
3. To copy the core image library.

Entries:

1. From the Read-librarian-Control Cards
routine to:

e MAINTC for cataloging Linkage Edi-
tor output.
e MAINTC+4 on a DELETC statement.

2. From the Analysis-to-Fetch-Phases rou-
tine to MAINTC+8 to finish copying the
core image library before processing
another library.

Method: The first time MAINTC is entered,
IPL and Supervisor programs are either
cataloged from Linkage Editor output or are
copied on the output tape SYS002. Only IPL
and Supervisor cannot be deleted by a
DELETC card. A tapemark is written after
Supervisor.

Copy

If both the catalog bit in the communi-
cations region and the delete switch are
off, the complete core image library will
be copied to the output tape S¥S002. Then
the core image library trailer label and a
tapemark are written, and the routine
branches to the ANALEN entry point of the
Analysis-to-Fetch-Phases routine.

Catalog

If there is output from the Linkage Editor
to be cataloged, it is merged with the core
image library on SYSRES in collating
sequence. The output is on SYS002. If the
delete switch is on, phases or programs
specified by the operands of DELETC cards
will not be copied from SYSRES to the out-~
put tape. If the phase to be cataloged has
the same name as a phase that is already in
the core image library, the new phase will
be included on SYS002 and the old one will
be deleted.

Delete

If there is no output from the Linkage
Editor and the delete switch is on, phases
or programs specified by the operands of
DELETC cards will be deleted. All other
phases and programs of the core image
library will be copied from SYSRES to
SYS002.

MAINTC Exits:

e ANALEN at the end of the core image
library to process the other libraries.

s ENTMAI to get another control card
operand.

MAINTR CHARTS TA TO TG

Objectives:

1. To catalog modules in the relocatable
library.

2. To delete modules from the relocatable
library.

3. To delete the entire relocatable
library.

Entries:

1. From the Read-Librarian-Control-Cards

routine to:
e MAINTR on a CATALR statement.
e MAINTR+4 on a DELETR statement.

2. From the Analysis—-to-Fetch-Phases rou-
tine to MAINTR+8, to finish copying the
relocatable library before processing
another library.

Method: The first time MAINTR is entered,
SYS001 is opened as a scratch tape. The
Find-Library routine is used to locate the
beginning of the relocatable library and
open the output tape, SYS002.

Catalog

Modules that are specified by the operands
of CATALR control cards are merged with the
existing relocatable library in collating
sequence. The output of this merge is on
SYS002. The modules to be cataloged are on
SYSIPT.

The cards permitted in a module to be
cataloged are:
1. Linkage Editor control statements:
PHASE, INCLUDE and ENTRY
2. Symbol (SYM) cards
3. External symbol dictionary (ESD) cards

4. Text (TXT) cards

5. Replace (REP) cards

6. Relocation dictionary (RLD) cards
7. End (END) card.

ESD, TXT, and RLD cards are packed into
records that are 162 bytes long. The first
two bytes of the record contain the number
of logical records and the logical record
length. The packed record is written on
SYS001.

When the END card is read from SYSIPT:
1. It is written on SYS001.
2. 8YS001 is rewound.
3. The module header is written on SYS002.
4. The module is copied from SYS001 to
SYS002.
5. The routine returns to the ENTMAI entry
of Read-Librarian-Control-Cards routine
for another operand.

SYM, REP, INCLUDE, PHASE, and ENTRY
statements are written on SYS001. The
first and second operands of the PHASE
statement are scanned to assure they are
present.

Delete

If the operand of the DELETR control card
is ALL, the entire relocatable library will
be deleted from the output tape SYS002. 1If
the operand has a suffix of .ALL, all con-
secutive modules that have the same three-
character prefix as the DELETR operand will
be deleted. If the operand is a module
name, the module is deleted.

Copy

To finish copying the relocatable library
when all operands of CATALR and DELETR
cards have been processed:

1. Copy the remainder of relocatable
library to sSYs002.

2. Write a tapemark on SY¥S002 (if there
are any records in the relocatable
library).

3. Use the Find-Library-Routine to locate
the source statement library if neces-
sary.

4. Branch to the ANALEN entry point of the
Analysis-to-Fetch-Phases routine.

Service Programs - Librarian 103

MAINTR Exits

s ANALEN at the end of the relocatable
library to process the source statement
library.

e ENTMAI to get another control card
operand.

e AEND on a SYSIPT end-of-file or out-of-
cards condition to end the MAINT
procedure.

MAINTS CHARTS UA TO UJ

Objectives:

1. To catalog books in the source state-
ment library.

2. To delete books from the source state-
ment library.

3. To delete a sublibrary from the source
statement library.

Entries:
1. From the Read-Librarian-Control-Cards
routine to:
¢ MAINTS on a CATALS statement.
s MAINTS+4 on a DELETS statement.
e MAINTS+8 on a /* statement to merge
input into the source statement
library.

Method: The first time MAINTS is entered,
SYS001 is opened as a scratch tape. The
Find-Library routine is used to locate the
beginning of the source statement library
and open the output tape, SYS002. The
first block of the directory is read from
the source statement library.

Catalog - Pass 1

Each book name in the directory block is
compared to the operand of the CATALS card
until the place is found where the name
fits in. A new directory block is being
assembled up to this point. If the block
becomes full, it is written on the output
tape, SYS002.

The book read from SYSIPT is written on
the scratch tape, SYS001, in compressed
format. Input on SYSIPT may be in com-
pressed or card image format. The book
begins with a BKEND or a MACRO card and
ends with a BKEND or a MEND card. After
the book is written on SYS001, the routine

104 IBM S/360 BOS System Control (16K Tape)

branches to the Read Librarian Control
Cards routine for another operand.

Delete - Pass 1

Each book name in the directory block is
compared to the operand of the DELETS card
until the one to be deleted is found. A
new directory block is being assembled up
to this point. If the block becomes .full,
it is written on the output tape, SYS002.

The book name to be deleted is added to
a list-of-deletes block. When this block
becomes full or if a CATALS card is read,
the block is written on SYS001. The first
byte is X'00' to identify a list-of-deletes
block. The routine branches to the
Read-Librarian-Control-Cards routine for
another operand.

/

Copy and Merge - Pass 2

When all operands of CATALS and DELETS
cards have been processed, the remainder of
the directory is written on SYS002. The
scratch tape SYS001 is merged with the
existing source statement library in
collating sequence. When a list-of-deletes
block is read from SYS001, these books will
be bypassed on the existing source state-
ment library. When a book to be cataloged
has a book name equal to one already in th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>